skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CeO 2 Nanostructures Prepared by Selective Water‐Soluble Sr 3 Al 2 O 6 (SAO)‐CeO 2 Vertically Aligned Nanocomposite
The unique redox properties and high oxygen capacity of nanostructured CeO2demonstrate a wide range of applications, such as electrolytes for solid oxide fuel cells, gas sensors, and catalysis for automotive exhaust gas. Most CeO2nanomaterials are prepared by chemical synthesis or hard templating methods. An effective way to obtain highly textured, small‐radius dimensions with high specific surface area remains challenging. Here, highly textured CeO2nanostructures with various shapes ranging from nanowires to nanoporous thin films are successfully synthesized. Vertically aligned nanocomposites (VANs) of Sr3Al2O6(SAO) and CeO2are synthesized first while varying concentration ratio between them. Once the SAO is dissolved in water, the remaining CeO2forms distinct nanostructures. The thermal stability of the nanostructured CeO2is evaluated byin situheating XRD and thermal annealing tests. This method provides an alternative approach to preparing nanostructured CeO2without toxic chemical solutions or complex micro/nanofabrication techniques. These results present a novel approach to prepare nanostructured CeO2for future sensing and energy device applications.  more » « less
Award ID(s):
2323752 2016453
PAR ID:
10639994
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
27
Issue:
17
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report a single atom Rh1/CeO2catalyst prepared by the high temperature (800 °C) atom trapping (AT) method which is stable under both oxidative and reductive conditions. Infrared spectroscopic and electron microscopy characterization revealed the presence of exclusively ionic Rh species. These ionic Rh species are stable even under reducing conditions (CO at 300 °C) due to the strong interaction between Rh and CeO2achieved by the AT method, leading to high and reproducible CO oxidation activity regardless of whether the catalyst is reduced or oxidized. In contrast, ionic Rh species in catalysts synthesized by a conventional impregnation approach (e. g., calcined at 350 °C) can be readily reduced to form Rh nanoclusters/nanoparticles, which are easily oxidized under oxidative conditions, leading to loss of catalytic performance. The single atom Rh1/CeO2catalysts synthesized by the AT method do not exhibit changes during redox cycling hence are promising catalysts for emission control where redox cycling is encountered, and severe oxidation (fuel cut) leads to loss of performance. 
    more » « less
  2. Abstract We report the synthesis of ordered mesoporous ceria ( m CeO 2 ) with highly crystallinity and thermal stability using hybrid polymer templates consisting of organosilanes. Those organosilane-containing polymers can convert into silica-like nanostructures that further serve as thermally stable and mechanically strong templates to prevent the collapse of mesoporous frameworks during thermal-induced crystallization. Using a simple evaporation-induced self-assembly process, control of the interaction between templates and metal precursors allows the co-self-assembly of polymer micelles and Ce 3+ ions to form uniform porous structures. The porosity is well-retained after calcination up to 900 °C. After the thermal engineering at 700 °C for 12 h ( m CeO 2 -700-12 h), m CeO 2 still has a specific surface area of 96 m 2 g −1 with a pore size of 14 nm. m CeO 2 is demonstrated to be active for electrochemical oxidation of sulfite. m CeO 2 -700-12 h with a perfect balance of crystallinity and porosity shows the fastest intrinsic activity that is about 84 times more active than bulk CeO 2 and 5 times more active than m CeO 2 that has a lower crystallinity. 
    more » « less
  3. Self-assembled vertically aligned metal–oxide (Ni–CeO 2 ) nanocomposite thin films with novel multifunctionalities have been successfully deposited by a one-step growth method. The novel nanocomposite structures presents high-density Ni-nanopillars vertically aligned in a CeO 2 matrix. Strong and anisotropic magnetic properties have been demonstrated, with a saturation magnetization ( M s ) of ∼175 emu cm −3 and ∼135 emu cm −3 for out-of-plane and in-plane directions, respectively. Such unique vertically aligned ferromagnetic Ni nanopillars in the CeO 2 matrix have been successfully incorporated in high temperature superconductor YBa 2 Cu 3 O 7 (YBCO) coated conductors as effective magnetic flux pinning centers. The highly anisotropic nanostructures with high density vertical interfaces between the Ni nanopillars and CeO 2 matrix also promote the mixed electrical and ionic conductivities out-of-plane and thus demonstrate great potential as nanocomposite anode materials for solid oxide fuel cells and other potential applications requiring anisotropic ionic transport properties. 
    more » « less
  4. In this report, CeO 2 and SiO 2 supported 1 wt% Ru catalysts were synthesized and studied for dry reforming of methane (DRM) by introducing non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) fixed bed reactor. From quadrupole mass spectrometer (QMS) data, it is found that introducing non-thermal plasma in thermo-catalytic DRM promotes higher CH 4 and CO 2 conversion and syngas (CO + H 2 ) yield than those under thermal catalysis only conditions. According to the H 2 -TPR, CO 2 -TPD, and CO-TPD profiles, reducible CeO 2 supported Ru catalysts presented better activity compared to their irreducible SiO 2 supported Ru counterparts. For instance, the molar concentrations of CO and H 2 were 16% and 9%, respectively, for plasma-assisted thermo-catalytic DRM at 350 °C, while no apparent conversion was observed at the same temperature for thermo-catalytic DRM. Highly energetic electrons, ions, and radicals under non-equilibrium and non-thermal plasma conditions are considered to contribute to the activation of strong C–H bonds in CH 4 and C–O bonds in CO 2 , which significantly improves the CH 4 /CO 2 conversion during DRM reaction at low temperatures. At 450 °C, the 1 wt% Ru/CeO 2 nanorods sample showed the highest catalytic activity with 51% CH 4 and 37% CO 2 conversion compared to 1 wt% Ru/CeO 2 nanocubes (40% CH 4 and 30% CO 2 ). These results clearly indicate that the support shape and reducibility affect the plasma-assisted DRM reaction. This enhanced DRM activity is ascribed to the surface chemistry and defect structures of the CeO 2 nanorods support that can provide active surface facets, higher amounts of mobile oxygen and oxygen vacancy, and other surface defects. 
    more » « less
  5. NiOx/CeO2catalysts were synthesized under various pretreatment conditions. Different pretreatment conditions significantly influenced the activity of the NO reduction by CO reaction. 
    more » « less