skip to main content


Title: 5G NR Jamming, Spoofing, and Sniffing: Threat Assessment and Mitigation
In December 2017, the Third Generation Partnership Project (3GPP) released the first set of specifications for 5G New Radio (NR), which is currently the most widely accepted 5G cellular standard. 5G NR is expected to replace LTE and previous generations of cellular technology over the next several years, providing higher throughput, lower latency, and a host of new features. Similar to LTE, the 5G NR physical layer consists of several physical channels and signals, most of which are vital to the operation of the network. Unfortunately, like for any wireless technology, disruption through radio jamming is possible. This paper investigates the extent to which 5G NR is vulnerable to jamming and spoofing, by analyzing the physical downlink and uplink control channels and signals. We identify the weakest links in the 5G NR frame, and propose mitigation strategies that should be taken into account during implementation of 5G NR chipsets and base stations.  more » « less
Award ID(s):
1642873
NSF-PAR ID:
10057394
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Communications workshops
ISSN:
2164-7038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The extremely high data rates provided by communications in the millimeter-length (mmWave) frequency bands can help address the unprecedented demands of next-generation wireless communications. However, atmospheric attenuation and high propagation loss severely limit the coverage of mmWave networks. To overcome these challenges, multi-input-multi-output (MIMO) provides beamforming capabilities and high-gain steer- able antennas to expand communication coverage at mmWave frequencies. The main contribution of this paper is the per- formance evaluation of mmWave communications on top of the recently released NR standard for 5G cellular networks. Furthermore, we compare the performance of NR with the 4G long-term evolution (LTE) standard on a highly realistic campus environment. We consider physical layer constraints such as transmit power, ambient noise, receiver noise figure, and practical antenna gain in both cases, and examine bitrate and area coverage as the criteria to benchmark the performance. We also show the impact of MIMO technology to improve the performance of the 5G NR cellular network. Our evaluation demonstrates that 5G NR provides on average 6.7 times bitrate improvement without remarkable coverage degradation. 
    more » « less
  2. Henderson, Thomas ; Imputato, Pasquale ; Liu, Yuchen ; Gamess, Eric (Ed.)
    Physical (PHY) layer abstraction is an effective method to reduce the runtimes compared with link simulations but still accurately characterize the link performance. As a result, PHY layer abstraction for IEEE 802.11 WLAN and 3GPP LTE/5G has been widely configured in the network simulators such as ns-3, which achieve faster system-level simulations quantifying the network performance. Since the first publicly accessible 5G NR Sidelink (SL) link simulator has been recently developed, it provides a possibility of implementing the first PHY layer abstraction on 5G NR SL. This work deploys an efficient PHY layer abstraction method (i.e., EESM-log-SGN) for 5G NR SL based on the offline NR SL link simulation. The obtained layer abstraction which is further stored in ns-3 for use aims at the common 5G NR SL scenario of OFDM unicast single layer mapping in the context of Independent and Identically Distributed (i.i.d.) frequency-selective channels. We provide details about implementation, performance, and validation. 
    more » « less
  3. This paper presents mmCPTP, a cross-layer end-toend protocol for fast delivery of data over mmWave channels associated with emerging 5G services. Recent measurement studies of mmWave channels in urban micro cellular deployments show considerable fluctuation in received signal strength along with intermittent outages resulting from user mobility. This results in significant impairment of end-to-end data transfer throughput when regular TCP is used to transport data over such mmWave channels. To address this issue, we propose mmCPTP, a novel cross-layer end-to-end data transfer protocol that sets up a transport plug-in at or near the base station and uses feedback from the lower layer (RLC/MAC) to opportunistically pull data at the mobile client without the slow start and probing delays associated with TCP. The system model and end-to-end protocol architecture are described and compared with TCP and IndirectTCP (I-TCP) in terms of achievable data rate. The proposed mmCPTP protocol is evaluated using NS3 simulation for 5G NR (New Radio) considering a high-speed mobile user scenario. The system is further validated using a proof-of-concept prototype which emulates the high-speed mmWave/NR access link with traffic shaping over Gbps ethernet. Results show significant performance gains for mmCPTP over TCP and I-TCP (2.5x to 17.2x, depending on the version). 
    more » « less
  4. IEEE/IFIP (Ed.)
    We investigate the feasibility of targeted privacy attacks using only information available in physical channels of LTE mobile networks and propose three privacy attacks to demonstrate this feasibility: mobile-app fingerprinting attack, history attack, and correlation attack. These attacks can reveal the geolocation of targeted mobile devices, the victim's app usage patterns, and even the relationship between two users within the same LTE network cell. An attacker also may launch these attacks stealthily by capturing radio signals transmitted over the air, using only a passive sniffer as equipment. To ensure the impact of these attacks on mobile users' privacy, we perform evaluations in both laboratory and real-world settings, demonstrating their practicality and dependability. Furthermore, we argue that these attacks can target not only 4G/LTE but also the evolving 5G standards. 
    more » « less
  5. Abstract—Joint communication an dsensing allows the utiliza- tion of common spectral resources for communication and local- ization, reducing the cost of deployment. By using fifth generation (5G) New Radio (NR)(i.e.,the 3rd Generation Partnership Project Radio Access Network for 5G) reference signals,conventionally used for communication,this paper shows sub-meter precision localization is possible at millimeter wave frequencies.We derive the geometric dilution of precision of a bistatic radar configura- tion, a theoretical metric that characterizes how the target location estimation error varies as a function of the bistatic geometry and measurement errors.We develop a 5GNR compliant software test bench to characterize the measurement errors when estimating the time difference of arrival and angle of arrival with5GNR waveforms.The test bench is further utilized to demonstrate the accuracy of target localization and velocity estimation in several indoor and outdoor bistatic and multistatic configurations and to show that on average,the bistatic cconfiguration can achieve a location accuracy of 10.0 cm over a bistatic range of 25m, which can be further improved by deploying a multistaticradar configuration. Index Terms—5G NR;Bistatic Radar;Multistatic Radar;ge- ometric dilution of precision (GDOP);3GPP;localization;posi- tioning; position location 
    more » « less