skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Piezotronics in Photo‐Electrochemistry
Abstract Photo‐electrochemistry is the major trajectory for directly transforming solar energy into chemical compounds. The performance of a photo‐electrochemical (PEC) system is directly related to the interfacial electrical band energy landscape. Recently, piezotronics has stood out as a promising strategy for tuning interfacial energetics. It applies intrinsic or deformation‐induced ionic displacements (ferroelectric and piezoelectric polarizations) to engineer the interfacial charge distribution, and thereby the band structures of PEC electrodes. Here, contemporary research efforts of coupling piezotronics with photo‐electrochemisty are reviewed. Quantitative band diagrams of a polarization‐tuned semiconductor–electrolyte junction are first introduced, with an emphasis on the impact of interface chemistry. Experimental advances of employing piezoelectric and ferroelectric polarizations to enhance the charge separation and transportation, and surface kinetics of PEC water splitting are discussed. Finally, critical challenges of applying piezotronics in PEC systems and promising solutions are presented.  more » « less
Award ID(s):
1709025
PAR ID:
10077661
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
30
Issue:
43
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As a promising technology for sustainable hydrogen generation, photocatalytic (PC) and photoelectrochemical (PEC) water splitting have gathered immense attention over a half-century. While many review articles have covered extensive research achievements and technology innovations in water splitting, this article focuses on illustrating how the ferroelectric polarization influences charge separation and transportation in photocatalyst heterostructures during PC and PEC water splitting. This article first discusses the fundamentals of PC and PEC water splitting and how these electrochemical processes interact with the ferroelectric polarization-induced interfacial band bending, known as piezotronics. A few representative ferroelectric material-based heterogeneous photocatalyst systems are then discussed in detail to illustrate the effects of polarization, space charge region, and free charge concentration, which are critical factors determining the ferroelectric influences. Finally, a forward looking statement is provided to point out the research challenges and opportunities in this promising interdisciplinary research field between ferroelectrics and electrochemistry for clean energy applications. 
    more » « less
  2. Electrochemical catalyst design and optimization primarily relies on understanding and facilitating interfacial charge transfer. Recently, piezotronics have emerged as a promising method for tuning the interfacial energetics. The unique band-engineering capability using piezoelectric or ferroelectric polarization could lead to performance gains for electrochemical catalysis beyond what can be achieved by chemical or structural optimization. This article addresses the fundamentals of surface polarization and corresponding band modulation at solid–liquid interfaces. The most recent advances in piezotronic modulations are discussed from multiple perspectives of catalysis, including photocatalytic, photoelectrochemical, and electrochemical processes, particularly for energy-related applications. The concept of piezocatalysis, a direct conversion of mechanical energy to chemical energy, is introduced with an example of mechanically driven water splitting. While still in the early stages, piezotronics is envisioned to become a powerful tool for revolutionizing electrochemical catalysis. 
    more » « less
  3. High energy density, high temperature, and low loss polymer dielectrics are highly desirable for electric energy storage, e.g., film capacitors in the power electronics of electric vehicles and high-speed trains. Fundamentally, high polarization and low dielectric loss are two conflicting physical properties, because more polarization processes will involve more loss mechanisms. As such, we can only achieve a delicate balance between high dielectric constant and reasonably low loss. This review focuses on achieving low dielectric loss while trying to enhance dielectric constants for dielectric polymers, which can be divided into two categories: extrinsic and intrinsic. For extrinsic dielectric systems, the working mechanisms include dipolar (e.g., nanodielectrics) and space charge (e.g., ion gels) interfacial polarizations. These polarizations do not increase the intrinsic dielectric constants, but cause decreased breakdown strength and increased dielectric loss for polymers. For intrinsic dielectric polymers, the dielectric constant originates from electronic, atomic (or vibrational), and orientational polarizations, which are intrinsic to the polymers themselves. Because of the nature of molecular bonding for organic polymers, the dielectric constant from electronic and atomic polarizations is limited to 2-5 for hydrocarbon-based insulators (i.e., band gap > 4 eV). It is possible to use orientational polarization to enhance intrinsic dielectric constant while keeping reasonably low loss. However, nonlinear ferroelectric switching in ferroelectric polymers must be avoided. Meanwhile, paraelectric polymers often exhibit high electronic conduction due to large chain motion in the paraelectric phase. In this sense, dipolar glass polymers are more attractive for low loss dielectrics, because frozen chain dynamics enables deep traps to prevent electronic conduction. Both side-chain and main-chain dipolar glass polymers are promising candidates. Furthermore, it is possible to combine intrinsic and extrinsic dielectric properties synergistically in multilayer films to enhance breakdown strength and further reduce dielectric loss for high dielectric constant polar polymers. At last, future research directions are briefly discussed for the ultimate realization of next generation polymer film capacitors. 
    more » « less
  4. Abstract For hardware artificial intelligence, the central task is to design and develop artificial synapses with needed characteristics. Here, the design and experimental demonstration of a van der Waals (vdW) photo‐ferroelectric synapse are reported. In the photo‐ferroelectric synapse, the synaptic memory is extracted by reading the photocurrent, and written or edited by electrical pulses. The semiconducting vdW organic‐inorganic halide perovskite ((R)‐(–)‐1‐cyclohexylethylammonium)PbI3(R‐CYHEAPbI3) photo‐ferroelectric serves as the model photo‐ferroelectric channel. Here, the vdW organic layer provides ferroelectric dipole and the PbI6octahedron is responsible for photon absorption and charge transport. The R‐CYHEAPbI3photo‐ferroelectric synapse show a writing/reading dynamics with >200 synaptic states, close to 103on/off ratio, and reasonable endurance and retention characteristics. With the experimentally measured weight dynamics (parallel reading through ferroelectric photovoltaic effect and writing by electrical pulses) of R‐CYHEAPbI3synapses, the feasibility of using a crossbar circuit to implement classic training and inference of hand‐written digits is presented. An image recognition accuracy of up to 90% is obtained. The demonstration of such a vdW photo‐ferroelectric synapse opens a window in the design of advanced devices for artificial intelligence. 
    more » « less
  5. Abstract Using lead phthalocyanine (PbPc) as surface doping material on black phosphorous (BP) we observe enhanced photo-excited carriers in the PbPc/BP heterostructure. The interfacial energy level alignment is investigated with ultra violet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The heterojunction is type I with gap of BP nested in that of PbPc, facilitating confinement of electrons and holes in BP. Ultrafast time-resolved two-photon photoemission (TR-2PPE) spectroscopy is used to study the influence of PbPc on the photo excited unoccupied electronic states and the dynamics of the relaxation processes. Monolayer PbPc can greatly increase the pump excited hot electrons and the 2 photon emission of BP. The enhanced population in the intermediate states is attributed to the straddling of the band alignment which benefits the photo excited electrons in PbPc transferring to BP. Density functional theory calculations supported the interface dipole and charge redistribution. Our results provide a fundamental understanding of the excellent opto-electrical response of PbPc/BP interface of promising application in the high efficient photo detectors. 
    more » « less