Abstract Electrically driven light‐emitting diodes (ED LEDs) based on 3D metal halide perovskites have seen remarkable advancements during the past decade. However, the highest‐performing devices are largely based on lead‐containing 3D perovskites, presenting two key challenges – toxicity and stability – that must be addressed for commercialization. Reducing structural dimensionality and incorporating non‐lead metals present promising pathways to address these issues. Although research on ED LEDs based on low‐dimensional, lead‐free metal halides (LD LFMHs) is growing, their performance still significantly lags behind that of 3D lead halide perovskites. This review seeks to deliver a comprehensive overview of ED LEDs based on LD LFMHs, covering a brief history of their development, methods for material synthesis, luminescence mechanisms, and applications in electroluminescent devices. It also examines current challenges and proposes practical strategies to enhance device performance, with the goal of inspiring further progress in the field.
more »
« less
Solvent‐Free Fabrication Methods of Metal Halide Perovskites
Abstract Metal halide perovskites have ascended as a remarkable class of materials in recent years, demonstrating exceptional promise for application in various electronic and optoelectronic devices. The vast majority of research on these materials focuses on their processing from solution, which is relatively easily executed in laboratory settings, but its scalability for industrial mass production remains a significant hurdle. Furthermore, its reliance on highly toxic solvents imposes limitations with respect to large‐area fabrication and have a negative environmental impact. This review comprehensively explores the current status of solvent‐free fabrication methods for metal halide perovskites, outlines the current challenges and opportunities, and provides a critical assessment of the technological readiness and future research directions. The development of robust and scalable solvent‐free fabrication methodologies is essential to realizing the full potential of metal halide perovskites. We hope that this review will serve as a catalyst, inspiring and guiding researchers to explore new strategies for the solvent‐free deposition of these remarkable materials, thereby expediting their integration into technological applications.
more »
« less
- Award ID(s):
- 2135937
- PAR ID:
- 10640177
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 37
- Issue:
- 40
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Layered halide perovskites have garnered significant interest due to their exceptional optoelectronic properties and great promises in light‐emitting applications. Achieving high‐performance perovskite light‐emitting diodes (PeLEDs) requires a deep understanding of exciton dynamics in these materials. This review begins with a fundamental overview of the structural and photophysical properties of layered halide perovskites, then delves into the importance of dimensionality control and cascade energy transfer in quasi‐2D PeLEDs. In the second half of the review, more complex exciton dynamics, such as multiexciton processes and triplet exciton dynamics, from the perspective of LEDs are explored. Through this comprehensive review, an in‐depth understanding of the critical aspects of exciton dynamics in layered halide perovskites and their impacts on future research and technological advancements for layered halide PeLEDs is provided.more » « less
-
Excited by the great success of metal halide perovskites in the optoelectronic and electro-optic fields and the interesting emerging physics (Rashba splitting, quantum anomalous hall effect) of layered metal halides, metal halides have recently been attracting significant attentions from both research and industrial communities. It is shown that most progresses have been made when these materials are obtained at reduced dimensions. Among several growth methods, vapor phase epitaxy has been demonstrated with a universal control on morphology, phase, and composition. We thus believe that a thorough understanding on the physical properties and on the growth of general metal halide compounds at reduced dimensions would be very beneficial in the study of recent perovskites and layered metal halide materials. This review covers the physical properties of most studied metal halides and summarizes the vapor phase epitaxial growth knowledge collected in the past century. We hope that this comprehensive review could be helpful in designing new physical properties and in planning growth parameters for emerging metal halide crystals.more » « less
-
Metal-halide perovskites, in particular their nanocrystal forms, have emerged as a new generation of light-emitting materials with exceptional optical properties, including narrow emissions covering the whole visible region with high photoluminescence quantum efficiencies of up to near-unity. Remarkable progress has been achieved over the last few years in the areas of materials development and device integration. A variety of synthetic approaches have been established to precisely control the compositions and microstructures of metal-halide perovskite nanocrystals (NCs) with tunable bandgaps and emission colors. The use of metal-halide perovskite NCs as active materials for optoelectronic devices has been extensively explored. Here, we provide a brief overview of recent advances in the development and application of metal-halide perovskite NCs. From color tuning via ion exchange and manipulation of quantum size effects, to stability enhancement via surface passivation, new chemistry for materials development is discussed. In addition, processes in optoelectronic devices based on metal-halide perovskite NCs, in particular, light-emitting diodes and radiation detectors, will be introduced. Opportunities for future research in metal-halide perovskite NCs are provided as well.more » « less
-
Metal halide perovskites have emerged as the next generation of light emitting semiconducting materials due to their excellent properties such as tunable bandgaps, high photoluminescence quantum yield, and high color purity. Nickel oxide is a hole transport material that has been used in planar light emitting diodes (LEDs). In this paper, we develop a novel method for the large scale fabrication of metal halide perovskite nanowire arrays encapsulated inside nickel oxide nanotubes. We study the structural and spectral properties of these infiltrated perovskites nanowires and, to the best of our knowledge, for the first time report on a working LED device consisting of perovskites encapsulated inside nickel oxide nanotubes. Finally, we study the photoluminescence and electroluminescence of an LED with MAPbBr 3 inside nickel oxide nanotubes and obtain an outstanding current efficiency of 5.99 Cd A −1 and external quantum efficiency of 3.9% for the LED device.more » « less
An official website of the United States government
