A<sc>bstract</sc> In this paper we explorepp→W±(ℓ±ν)γto$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ in the SMEFT expansion. Calculations to this order are necessary to properly capture SMEFT contributions that grow with energy, as the interference between energy-enhanced SMEFT effects at$$ \mathcal{O}\left(1/{\Lambda}^2\right) $$ and the Standard Model is suppressed. We find that there are several dimension eight operators that interfere with the Standard Model and lead to the same energy growth, ~$$ \mathcal{O}\left({E}^4/{\Lambda}^4\right) $$ , as dimension six squared. While energy-enhanced SMEFT contributions are a main focus, our calculation includes the complete set of$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ SMEFT effects consistent with U(3)5flavor symmetry. Additionally, we include the decay of theW±→ ℓ±ν, making the calculation actually$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ . As such, we are able to study the impact of non-resonant SMEFT operators, such as$$ \left({L}^{\dagger }{\overline{\sigma}}^{\mu }{\tau}^IL\right)\left({Q}^{\dagger }{\overline{\sigma}}^{\nu }{\tau}^IQ\right) $$ Bμν, which contribute to$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ directly and not to$$ \overline{q}{q}^{\prime}\to {W}^{\pm}\gamma $$ . We show several distributions to illustrate the shape differences of the different contributions.
more »
« less
This content will become publicly available on June 1, 2026
Heterogeneous Microstructure in Laser-Processed Metastable Ti25Nb Alloy
Abstract The high thermal gradient and solidification velocity associated with the laser powder bed fusion process spurs formation of diverse microstructures in additively manufactured materials. This study focused on the phase composition observed in the microstructure of a laser-processed metastable titanium–niobium alloy. Through transmission electron microscopy experiments, we reveal the microstructures with several metastable phase, among which is a novel orthorhombic phase found in Nb-lean regions that is fundamentally different from the expected$${\alpha }^{{\prime}{\prime}}$$ orthorhombic phase. Second is the$${O}{\prime}$$ phase and the$${O}{\prime}$$ variant selection phenomenon in laser-processed metastable β-Ti alloys. Microstructural features were found to be highly sensitive to the processing history. We further examine the mechanisms behind these phase formations and discuss how these features can influence the properties of the alloy.
more »
« less
- Award ID(s):
- 2104839
- PAR ID:
- 10640638
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Shape Memory and Superelasticity
- Volume:
- 11
- Issue:
- 2
- ISSN:
- 2199-384X
- Page Range / eLocation ID:
- 277 to 290
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Let 𝜋 and \pi^{\prime}be cuspidal automorphic representations of \mathrm{GL}(n)and \mathrm{GL}(n^{\prime})with unitary central characters.We establish a new zero-free region for all \mathrm{GL}(1)-twists of the Rankin–Selberg 𝐿-function L(s,\pi\times\pi^{\prime}), generalizing Siegel’s celebrated work on Dirichlet 𝐿-functions.As an application, we prove the first unconditional Siegel–Walfisz theorem for the Dirichlet coefficients of -L^{\prime}(s,\pi\times\pi^{\prime})/L(s,\pi\times\pi^{\prime}).Also, for n\leq 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power 𝐿-functions L(s,\pi,\mathrm{Sym}^{n}\otimes\chi)of any cuspidal automorphic representation of \mathrm{GL}(2).more » « less
-
Abstract We state a general purpose algorithm for quickly finding primes in evenly divided sub-intervals. Legendre’s conjecture claims that for every positive integern, there exists a prime between$$n^2$$ and$$(n+1)^2$$ . Oppermann’s conjecture subsumes Legendre’s conjecture by claiming there are primes between$$n^2$$ and$$n(n+1)$$ and also between$$n(n+1)$$ and$$(n+1)^2$$ . Using Cramér’s conjecture as the basis for a heuristic run-time analysis, we show that our algorithm can verify Oppermann’s conjecture, and hence also Legendre’s conjecture, for all$$n\le N$$ in time$$O( N \log N \log \log N)$$ and space$$N^{O(1/\log \log N)}$$ . We implemented a parallel version of our algorithm and improved the empirical verification of Oppermann’s conjecture from the previous$$N = 2\cdot 10^{9}$$ up to$$N = 7.05\cdot 10^{13} > 2^{46}$$ , so we were finding 27 digit primes. The computation ran for about half a year on each of two platforms: four Intel Xeon Phi 7210 processors using a total of 256 cores, and a 192-core cluster of Intel Xeon E5-2630 2.3GHz processors.more » « less
-
Abstract In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:Certifying that a list ofnintegers has no 3-SUM solution can be done in Merlin–Arthur time$$\tilde{O}(n)$$ . Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n^{1.5})$$ time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$ and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$ time).Counting the number ofk-cliques with total edge weight equal to zero in ann-node graph can be done in Merlin–Arthur time$${\tilde{O}}(n^{\lceil k/2\rceil })$$ (where$$k\ge 3$$ ). For oddk, this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm-edge graph can be done in Merlin–Arthur time$${\tilde{O}}(m)$$ . Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only countk-cliques in unweighted graphs, and had worse running times for smallk.Computing the All-Pairs Shortest Distances matrix for ann-node graph can be done in Merlin–Arthur time$$\tilde{O}(n^2)$$ . Note this is optimal, as the matrix can have$$\Omega (n^2)$$ nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\tilde{O}(n^{2.94})$$ nondeterministic time algorithm.Certifying that ann-variablek-CNF is unsatisfiable can be done in Merlin–Arthur time$$2^{n/2 - n/O(k)}$$ . We also observe an algebrization barrier for the previous$$2^{n/2}\cdot \textrm{poly}(n)$$ -time Merlin–Arthur protocol of R. Williams [CCC’16] for$$\#$$ SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol fork-UNSAT running in$$2^{n/2}/n^{\omega (1)}$$ time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time$$2^{4n/5}\cdot \textrm{poly}(n)$$ . Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{2n/3}\cdot \textrm{poly}(n)$$ time.Due to the centrality of these problems in fine-grained complexity, our results have consequences for many other problems of interest. For example, our work implies that certifying there is no Subset Sum solution tonintegers can be done in Merlin–Arthur time$$2^{n/3}\cdot \textrm{poly}(n)$$ , improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{0.49991n}\cdot \textrm{poly}(n)$$ time.more » « less
-
Abstract The quantum simulation of quantum chemistry is a promising application of quantum computers. However, forNmolecular orbitals, the$${\mathcal{O}}({N}^{4})$$ gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with$${\mathcal{O}}({N}^{3})$$ gate complexity in small simulations, which reduces to$${\mathcal{O}}({N}^{2})$$ gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with$${\mathcal{O}}({N}^{3})$$ gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have$${\mathcal{O}}({N}^{2})$$ depth on a linearly connected array, an improvement over the$${\mathcal{O}}({N}^{3})$$ scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.more » « less
An official website of the United States government
