skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Filamentary Structures Formation around a Magnetic Pore Using High-resolution Observations of the Goode Solar Telescope
Abstract With the aid of high-resolution spatial and temporal observations from the Goode Solar Telescope, we present an investigation of the emergence, coalescence, and submergence of a moving magnetic feature (MMF) in the region surrounding a magnetic pore located at the periphery of a large sunspot. The results show that the MMF has a magnetic field strength greater than 500 G and is dominated by the horizontal magnetic component. We observe upflow at the inner part and downflow at the outer part, indicating a pattern of Evershed flow. The MMF emergence is accompanied by the expansion of a granule, which has several striations inside just like the twisted features found in the penumbra filament. Our analysis shows that although these striations have different properties of magnetic field and kinematics during the expansion of the granule, the overall magnetic and dynamic properties of the MMF remain stable. We find that the region where the MMF emerges and submerges becomes more penumbra-like, i.e., adjacent positive and negative values of elongated magnetic features that are parallel to each other, while the optical penumbra-like features are not apparent at the same time. Our work indicates that the dynamics of the MMF near the magnetic pore is important for the development of filamentary structure. The magnetic configuration produced by an MMF together with the elongation of a granule could thus be key to understand the formation of penumbra filaments.  more » « less
Award ID(s):
2108235 2309939 1821294
PAR ID:
10640705
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
973
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Abrasion acts to smooth glacial terrains and leaves behind linear scratch-like features (striations) on bedrock landscapes. Striations are often used as measures of glacier flow directions, but their morphology can also provide information about the subglacial stress conditions that produced the features. While striations are often abundant in the field, the processes that create them can be opaque and hard to examine in situ because they occur under thick layers of flowing ice. To alleviate that difficulty and provide information for interpretation of the populations of striations that are observed in the field, we conducted a set of laboratory experiments in which a ring of temperate debris-laden ice was slid atop a planar marble bed under various contact force conditions that led to the creation of hundreds of striations. During the experiment, numerous glaciological properties were continuously measured, including the resistive drag. Following the completion of the experiments, the marble beds were extracted, and the striations were measured for length and categorized by morphological type, and a subset was measured using a high-resolution white-light profilometer. These experiments showed that, similar to field observations, type 2 striations were initially the most abundant; however, we found that type 3 striations became the most abundant at large displacements. We found good correlation between the abundance of striations as a function of displacement and measured drag as a function of displacement. When taken together, these results suggest that, in natural settings, ice flow around small roughness elements in glacier beds can “reset” the basal debris field, causing striations to become more abundant in their wake. As roughness is linked to quarrying, abrasion rates may increase in areas of increased quarrying. 
    more » « less
  2. Context. The magnetic field is the underlying cause of solar activities. Spectropolarimetric Stokes inversions have been routinely used to extract the vector magnetic field from observations for about 40 years. In contrast, the photospheric continuum images have an observational history of more than 100 years. Aims. We suggest a new method to quickly estimate the unsigned radial component of the magnetic field, | B r |, and the transverse field, B t , just from photospheric continuum images ( I ) using deep convolutional neural networks (CNN). Methods. Two independent models, that is, I versus | B r | and I versus B t , are trained by the CNN with a residual architecture. A total of 7800 sets of data ( I , B r and B t ) covering 17 active region patches from 2011 to 2015 from the Helioseismic and Magnetic Imager are used to train and validate the models. Results. The CNN models can successfully estimate | B r | as well as B t maps in sunspot umbra, penumbra, pore, and strong network regions based on the evaluation of four active regions (test datasets). From a series of continuum images, we can also detect the emergence of a transverse magnetic field quantitatively with the trained CNN model. The three-day evolution of the averaged value of the estimated | B r | and B t from continuum images follows that from Stokes inversions well. Furthermore, our models can reproduce the nonlinear relationships between I and | B r | as well as B t , explaining why we can estimate these relationships just from continuum images. Conclusions. Our method provides an effective way to quickly estimate | B r | and B t maps from photospheric continuum images. The method can be applied to the reconstruction of the historical magnetic fields and to future observations for providing the quick look data of the magnetic fields. 
    more » « less
  3. Context. The formation of molecular gas in interstellar clouds is a slow process, but can be enhanced by gas compression. Magneto-hydrodynamic (MHD) waves can create compressed quasi-periodic linear structures, referred to as striations. Striations are observed at the column densities at which the transition from atomic to molecular gas takes place. Aims. We explore the role of MHD waves in the CO chemistry in regions with striations within molecular clouds. Methods. We targeted a region with striations in the Polaris Flare cloud. We conducted a CO J = 2−1 survey in order to probe the molecular gas properties. We used archival starlight polarization data and dust emission maps in order to probe the magnetic field properties and compare against the CO morphological and kinematic properties. We assessed the interaction of compressible MHD wave modes with CO chemistry by comparing their characteristic timescales. Results. The estimated magnetic field is 38–76 µG. In the CO integrated intensity map, we observe a dominant quasiperiodic intensity structure that tends to be parallel to the magnetic field orientation and has a wavelength of approximately one parsec. The periodicity axis is ~17° off from the mean magnetic field orientation and is also observed in the dust intensity map. The contrast in the CO integrated intensity map is ~2.4 times higher than the contrast of the column density map, indicating that CO formation is enhanced locally. We suggest that a dominant slow magnetosonic mode with an estimated period of 2.1–3.4 Myr and a propagation speed of 0.30–0.45 km s −1 is likely to have enhanced the formation of CO, hence created the observed periodic pattern. We also suggest that within uncertainties, a fast magnetosonic mode with a period of 0.48 Myr and a velocity of 2.0 km s −1 could have played some role in increasing the CO abundance. Conclusions. Quasiperiodic CO structures observed in striation regions may be the imprint of MHD wave modes. The Alfvénic speed sets the dynamical timescales of the compressible MHD modes and determines which wave modes are involved in the CO chemistry. 
    more » « less
  4. Context.Light bridges are bright, long, and narrow features that are typically connected to the formation or decay processes of sunspots and pores. Aims.The interaction of magnetic fields and plasma flows is investigated in the trailing part of an active region, where pores and magnetic knots evolve into a complex sunspot. The goal is to identify the photospheric and chromospheric processes, which transform the mainly vertical magnetic fields of pores into a sunspot with multiple umbral cores, light bridges, and rudimentary penumbrae. Methods.Conducting observations with a broad variety of telescopes and instruments provides access to different atmospheric layers and the changing morphology of features connected to strong magnetic fields. While the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) provides full-disk continuum images and line-of-sight magnetograms, the fine structure and flows around a pore can be deduced from high-resolution observations in various wavelengths as provided by theGoodeSolar Telescope (GST) at the Big Bear Solar Observatory (BBSO). Horizontal proper motions are evaluated applying local correlation tracking (LCT) to the available time series, whereas the connectivity of sunspot features can be established using the background-subtracted activity maps (BaSAMs). Results.Photospheric flow maps indicate radial outflows, where the light bridge connects to the surrounding granulation, whereas inflows are present at the border of the pores. In contrast, the chromospheric flow maps show strong radial outflows at superpenumbral scales, even in the absence of a penumbra in the photosphere. The region in between the two polarities is characterized by expanding granules creating strong divergence centers. Variations in BaSAMs follow locations of significant and persistent changes in and around pores. The resulting maps indicate low variations along the light bridge, as well as thin hairlines connecting the light bridge to the pores and strong variations at the border of pores. Various BaSAMs demonstrate the interaction of pores with the surrounding supergranular cell. The Hαline-of-sight velocity maps provide further insights into the flow structure, with twisted motions along some of the radial filaments around the pore with the light bridge. Furthermore, flows along filaments connecting the two polarities of the active region are pronounced in the line-of-sight velocity maps. Conclusions.The present observations reveal that even small-scale changes of plasma motions in and around pores are conducive to transform pores into sunspots. In addition, chromospheric counterparts of penumbral filaments appear much earlier than the penumbral filaments in the photosphere. Penumbra formation is aided by a stable magnetic feature that anchors the advection of magnetic flux and provides a connection to the surrounding supergranular cell, whereas continuously emerging flux and strong light bridges are counteragents that affect the appearance and complexity of sunspots and their penumbrae. 
    more » « less
  5. Abstract In Earth’s foreshock, there are many foreshock transients that have core regions with low field strength, low density, high temperature, and bulk velocity variation. Through dynamic pressure perturbations, they can disturb the magnetosphere–ionosphere system. They can also accelerate particles contributing to particle acceleration at the bow shock. Recent Magnetospheric Multiscale (MMS) mission observations showed that inside the low field strength core region, there are usually kinetic‐scale magnetic holes with even lower field strength (<1 nT). However, their nature and effects are unknown. In this study, we used MMS observations to conduct case studies on these magnetic holes. We found that they could be subion‐scale current sheets without a magnetic normal component and guide field, driven by the motion of demagnetized electrons. These magnetic holes can also be subion‐scale flux ropes or magnetic helical structures with weak axial field. The low field strength inside them can be either driven by external expansion or electron mirror mode. Electrons inside them show flux depletion at 90° pitch angle resulting in an “electron hole” distribution. These magnetic holes can play a role in electron dynamics, wave excitation, and shaping the foreshock transient structures. Our detailed study of such features sheds light on the turbulent nature of foreshock transient cores. 
    more » « less