ABSTRACT Biophysics is an interdisciplinary pursuit requiring researchers with knowledge and skills in several areas. Optical instruments and computers are fundamental tools in biophysics research to collect and analyze data. We developed a 1-semester Optical Engineering Laboratory course to teach image processing, optical engineering, and research skills to undergraduate students majoring in biology and biochemistry. With the use of development systems on students' laptops and in the cloud, students learned image processing with Python and OpenCV. Each student constructed a microprocessor-based lensless holographic microscope, gaining hands-on experience with optical engineering. The class culminated in original, student-designed research projects. All lectures, hands-on labs, and student research projects were performed both in person and remotely, in response to the COVID-19 pandemic.
more »
« less
This content will become publicly available on June 22, 2026
Advanced Microfabrication Manufacturing Course Comparison of Online and In-person Teaching with Hands-on Lab Component for Interdisciplinary Graduate Education
Semiconductor/Microsystems education is in growing demand due to the demand to bring semiconducting manufacturing back to the USA. At the University of New Mexico (UNM), we have six courses that teach different aspects of semiconductor/microsystems manufacturing from theory to hands-on experience. The Advanced Microfabrication course is a multidisciplinary graduate course that is taken by students with various background and primarily from two different programs i) Nanoscience and Microsystems Engineering (NSME) Program (an interdisciplinary program across various schools and departments) and ii) students from the Mechanical Engineering Department. The course typically consists of a series of lectures along with hands-on microfabrication labs in a cleanroom which were designed to complement the lectures. The course material is multidisciplinary with topics ranging from chemistry, physics, mechanical engineering, electrical engineering, chemical engineering, statistics, material science and biomedical. This comparison study investigates several factors such as lab components, synchronous online versus in-person lectures, and students discipline to determine impact on the final exam (performance) in the course. Based on n=99 students over seven years it was determined that students from the interdisciplinary programs performed better with an average score of 64.04 ±13.26% compared to ME students 55.02 ±16.81%. It was also determined that both in-person lectures and students participating in labs had a significant impact on their final exam grades. Students who attended in-person lectures scored an average of 64.35 ± 15.11% whereas online students scored 51.81 ±14.77%, that is an increase of 12.54%. Students attending hands-on labs also had a significant impact resulting in a 10.17% increase in scores. The results demonstrate that the multidisciplinary material of advanced semiconductor manufacturing is potentially best learned through a combination of in-person lectures and hands-on lab experience and that students who have a more interdisciplinary background are likely to perform better due to the multidisciplinary course contents.
more »
« less
- Award ID(s):
- 2325367
- PAR ID:
- 10640845
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Format(s):
- Medium: X
- Location:
- Montreal Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bennett, M; Wolf, S.; Frank, B. W. (Ed.)Computer simulations for physics labs may be combined with hands-on lab equipment to boost student understanding and make labs more accessible. Hybrid labs of HTML5-based computer simulations and hands-on lab equipment for topics in mechanics were investigated in a large, algebra-based, studio physics course for life science students at a private, research-intensive institution. Computer simulations were combined with hands-on equipment and compared to traditional hands-on labs using an A/B testing protocol. Learning outcomes were measured for the specific topic of momentum conservation by comparing student scores on post-lab exercises, related quiz and exam questions, and a subset of questions on the Energy and Momentum Conceptual Survey (EMCS) administered before and after instruction for both groups. We find that students who completed a hands-on lab vs. a hybrid lab showed no difference in performance on momentum assessments.more » « less
-
null (Ed.)This paper describes an innovative graduate course in agricultural economics that has evolved over the past decade and attracts students from across the Purdue University campus. Its novel combination of guest lectures on key sustainability topics, and intensive, computer-based lab assignments with the SIMPLE model of global food and environmental security, prepares students to undertake innovative projects. These independent projects are presented to the class, written up, and submitted in lieu of a final exam. The topics covered are quite diverse and range from the impacts of women empowerment on food security, to the consequences of heat stress on farm workers, and the impact of reducing food waste. The course has spawned two dozen published journal articles, inspired MS and PhD theses, and facilitated a number of important interdisciplinary projects. The complete syllabus, lab assignments, and detailed course design are made available for others to use and adapt to their own circumstances. Future versions of the course will seek to incorporate explicitly spatial analysis of agriculture, land, water, and environmental quality outcomes.more » « less
-
Triggered situational interest in introductory courses can encourage student engagement, motivation, and value for the geosciences. In-person labs have traditionally played a unique role in triggering situational interest compared to lectures, but the COVID transition online disrupted these dynamics. We examine students’ self-reported situational interest from 6,463 responses to weekly surveys in online introductory geoscience lab courses at five U.S. institutions during fall 2020 and spring 2021. Approximately half of students reported that labs were equally (49.4%) or more interesting (4.3%) online, compared to a hypothetical in-person option. Analysis showed a statistically-significant interaction between student situational interest and the combined effect of 1) the course the students were enrolled in and 2) the topic of the lab session (F (20, 6395) = 4.038, p < 0.001). However, topic and course together explain only about 4% of the variance in the dataset, indicating that other factors have a large role in triggering interest. Students who indicated that labs were less interesting online (46.3%) most often cited not being able to physically interact with instructional materials (56.3%) and difficulty interacting with peers (30.6%). When asked what revisions would increase their situational interest, additional hands-on interaction (22.8%) and increased relevance to their life or future career (20.2%) were the answer choices students selected most frequently. These findings identify modifications and enhancements grounded in students’ self-reported interest that can inform the design of online introductory geology labs.more » « less
-
In physical sciences and engineering research, the study of virtual labs (VL) has generally focused on case studies about their implementation into classrooms or engineering design process and elements. However, few (if any) studies have assessed the viability of using conventional course evaluation instruments (originally designed for traditional in-person classroom environments), to evaluate virtual lab classes. This article presents a preliminary set of results from a study that examines and compares engineering undergraduate students’ evaluations of a capstone mechanical and aerospace engineering laboratory course taught in two different environments: in-person and remotely (virtual/online environment). The instrument used in both cases was the conventional course evaluation instrument that was quantitative and designed using a Likert scale. The aim of this study is to understand how this instrument captures or does not capture the students’ perceptions of their learning of course content in virtual and in-person learning environments. The second aim of this study is to explore students’ perceptions of the effectiveness and acceptance of virtual learning tools and environments applied in engineering laboratory classes. A total of 226 undergraduate students participated in this convergent mixed method study within a mechanical and aerospace engineering department at a research-1 institute in the northeastern region of the United States. Our initial analyses of the students’ course evaluations indicate that there were no statistically significant differences in the perceived teaching effectiveness of the course. However, statistically significant differences were found between the course final grades between students who participated in the in-person lab juxtapose to those who engaged in the virtual laboratory environment. In addition, qualitative results suggest that students’ perceptions of the value of in-person and virtual labs vary depending on prior engineering experiences. These results suggest that there is room for improvement in conventional course evaluation instruments of senior capstone engineering education laboratories that take place either in-person or virtually.more » « less
An official website of the United States government
