Abstract Mucus is an important component of airway host defenses that acts by enabling the trapping and clearance of infectious materials such as bacteria and viruses. It can be difficult, however, to design experiments that independently determine the extent to which mucus contributes to innate barrier functions in the lung. Here, we provide detailed protocols to collect mucus from human airway epithelial cultures and evaluate how the properties of mucus impact mucociliary transport and protection from viral infection. We include recommended test parameters depending on the specific research question as it relates to respiratory infectious diseases. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Analysis of mucociliary transport and ciliary beat frequency in HAE cultures Basic Protocol 2: Collection of mucus from HAE cultures Basic Protocol 3: Transplantation of mucus to HAE cultures and infection with virus
more »
« less
Mucus Physically Restricts Influenza A Viral Particle Access to the Epithelium
Abstract Prior work suggests influenza A virus (IAV) crosses the airway mucus barrier in a sialic acid‐dependent manner through the actions of the viral envelope proteins, hemagglutinin, and neuraminidase. However, host and viral factors that influence how efficiently mucus traps IAV remain poorly defined. In this work, how the physicochemical properties of mucus influence its ability to effectively capture IAV is assessed using fluorescence video microscopy and multiple particle tracking. Our studies suggest an airway mucus gel layer must be produced with virus‐sized pores to physically constrain IAV. While sialic acid binding by IAV may improve mucus trapping efficiency, sialic acid binding preference is found to have little impact on IAV mobility and the fraction of viral particles expected to penetrate the mucus barrier. Further, synthetic polymeric hydrogels engineered with mucus‐like architecture are similarly protective against IAV infection despite their lack of sialic acid decoy receptors. Together, this work provides new insights on mucus barrier function toward IAV with important implications on innate host defense and transmission of respiratory viruses.
more »
« less
- Award ID(s):
- 2129624
- PAR ID:
- 10640861
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Biology
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2701-0198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT RNA viruses are infamous for their ability to cross species barriers, posing threats to global health and security. Influenza A virus (IAV) is naturally found in avian hosts but periodically spills over into marine wildlife. IAV outbreaks occur in the Northwest Atlantic, but grey seals (Halichoerus grypus) appear to be less susceptible to IAV compared to other species. The subclinical nature of IAV infection in addition to life history factors suggest grey seals are a potential wild reservoir host for IAV. We investigated differential gene expression among grey seals naturally exposed to IAV to elucidate genetic mechanisms involved in grey seal disease resistance. RNA sequencing was conducted on blood samples (N = 31) collected from grey seal pups in Massachusetts, US between 2014 and 2019. Samples were grouped for analysis based on presence/absence of viral RNA and antibodies. In the presence of IAV RNA, we observed widespread down‐regulation of genes, including immune genes, potentially as a result of IAV‐induced host shutoff. Immune down‐regulation occurred in acute stage of IAV infection (+ viral RNA, − antibodies), followed by up‐regulation of protein production in peak stage (+ viral RNA, + antibodies), possibly as a result of increased viral replication. Evidence of an activated immune response was observed in late stage of infection (− viral RNA, + antibodies) with up‐regulated adaptive immunity genes. We hypothesize that the combination of down‐ and up‐regulated immune gene expression may prevent overstimulation of the immune response, acting as an adaptation in grey seals to resist IAV‐associated mortality.more » « less
-
Kolawole, Abimbola O. (Ed.)ABSTRACT Drop-based microfluidics has revolutionized single-cell studies and can be applied toward analyzing tens of thousands to millions of single cells and their products contained within picoliter-sized drops. Drop-based microfluidics can shed insight into single-cell virology, enabling higher-resolution analysis of cellular and viral heterogeneity during viral infection. In this work, individual A549, MDCK, and siat7e cells were infected with influenza A virus (IAV) and encapsulated into 100-μm-size drops. Initial studies of uninfected cells encapsulated in drops demonstrated high cell viability and drop stability. Cell viability of uninfected cells in the drops remained above 75%, and the average drop radii changed by less than 3% following cell encapsulation and incubation over 24 h. Infection parameters were analyzed over 24 h from individually infected cells in drops. The number of IAV viral genomes and infectious viruses released from A549 and MDCK cells in drops was not significantly different from bulk infection as measured by reverse transcriptase quantitative PCR (RT-qPCR) and plaque assay. The application of drop-based microfluidics in this work expands the capacity to propagate IAV viruses and perform high-throughput analyses of individually infected cells. IMPORTANCE Drop-based microfluidics is a cutting-edge tool in single-cell research. Here, we used drop-based microfluidics to encapsulate thousands of individual cells infected with influenza A virus within picoliter-sized drops. Drop stability, cell loading, and cell viability were quantified from three different cell lines that support influenza A virus propagation. Similar levels of viral progeny as determined by RT-qPCR and plaque assay were observed from encapsulated cells in drops compared to bulk culture. This approach enables the ability to propagate influenza A virus from encapsulated cells, allowing for future high-throughput analysis of single host cell interactions in isolated microenvironments over the course of the viral life cycle.more » « less
-
ABSTRACT The marine microalgaEmiliania huxleyiis widely distributed in the surface oceans and is prone to infection by coccolithoviruses that can terminate its blooms. However, little is known about how global change factors like solar UV radiation (UVR) and ocean warming affect the host‐virus interaction. We grew the microalga at 2 temperature levels with or without the virus in the presence or absence of UVR and investigated the physiological and transcriptional responses. We showed that viral infection noticeably reduced photosynthesis and growth of the alga but was less harmful to its physiology under conditions where UVR influenced viral DNA expression. In the virus‐infected cells, the combination of UVR and warming (+4°C) led to a 13‐fold increase in photosynthetic carbon fixation rate, with warming alone contributing a change of about 5–7‐fold. This was attributed to upregulated expression of genes related to carboxylation and light‐harvesting proteins under the influence of UVR, and to warming‐reduced infectivity. In the absence of UVR, viral infection downregulated the metabolic pathways of photosynthesis and fatty acid degradation. Our results suggest that solar UV exposure in a warming ocean can reduce the severity of viral attack on this ecologically important microalga, potentially prolonging its blooms.more » « less
-
Subbarao, Kanta (Ed.)ABSTRACT Between 2013 and 2018, the novel A/Anhui/1/2013 (AH/13)-lineage H7N9 virus caused at least five waves of outbreaks in humans, totaling 1,567 confirmed human cases in China. Surveillance data indicated a disproportionate distribution of poultry infected with this AH/13-lineage virus, and laboratory experiments demonstrated that this virus can efficiently spread among chickens but not among Pekin ducks. The underlying mechanism of this selective transmission remains unclear. In this study, we demonstrated the absence of Neu5Gc expression in chickens across all respiratory and gastrointestinal tissues. However, Neu5Gc expression varied among different duck species and even within the tissues of the same species. The AH/13-lineage viruses exclusively bind to acetylneuraminic acid (Neu5Ac), in contrast to wild waterbird H7 viruses that bind both Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). The level of Neu5Gc expression influences H7 virus replication and facilitates adaptive mutations in these viruses. In summary, our findings highlight the critical role of Neu5Gc in affecting the host range and interspecies transmission dynamics of H7 viruses among avian species.IMPORTANCEMigratory waterfowl, gulls, and shorebirds are natural reservoirs for influenza A viruses (IAVs) that can occasionally spill over to domestic poultry, and ultimately humans. This study showed wild-type H7 IAVs from waterbirds initially bind to glycan receptors terminated with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). However, after enzootic transmission in chickens, the viruses exclusively bind to Neu5Ac. The absence of Neu5Gc expression in gallinaceous poultry, particularly chickens, exerts selective pressure, shaping IAV populations, and promoting the acquisition of adaptive amino acid substitutions in the hemagglutinin protein. This results in the loss of Neu5Gc binding and an increase in virus transmissibility in gallinaceous poultry, particularly chickens. Consequently, the transmission capability of these poultry-adapted H7 IAVs in wild water birds decreases. Timely intervention, such as stamping out, may help reduce virus adaptation to domestic chicken populations and lower the risk of enzootic outbreaks, including those caused by IAVs exhibiting high pathogenicity.more » « less
An official website of the United States government

