skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model for Dynamical Simulation
Abstract The fast simulation of dynamical systems is a key challenge in many scientific and engineering applications, such as weather forecasting, disease control, and drug discovery. With the recent success of deep learning, there is increasing interest in using neural networks to solve differential equations in a data‐driven manner. However, existing methods are either limited to specific types of differential equations or require large amounts of data for training. This restricts their practicality in many real‐world applications, where data is often scarce or expensive to obtain. To address this, a novel multi‐modal foundation model, namedFMint(FoundationModel based onInitialization) is proposed, to bridge the gap between human‐designed and data‐driven models for the fast simulation of dynamical systems. Built on a decoder‐only transformer architecture with in‐context learning, FMint utilizes both numerical and textual data to learn a universal error correction scheme for dynamical systems, using prompted sequences of coarse solutions from traditional solvers. The model is pre‐trained on a corpus of 400K ordinary differential equations (ODEs), and extensive experiments are performed on challenging ODEs that exhibit chaotic behavior and of high dimensionality. The results demonstrate the effectiveness of the proposed model in terms of both accuracy and efficiency compared to classical numerical solvers, highlighting FMint's potential as a general‐purpose solver for dynamical systems. This approach achieves an accuracy improvement of 1 to 2 orders of magnitude over state‐of‐the‐art dynamical system simulators, and delivers a 5X speedup compared to traditional numerical algorithms. The code for FMint is available athttps://github.com/margotyjx/FMint.  more » « less
Award ID(s):
2244988 2206333
PAR ID:
10640876
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Theory and Simulations
Volume:
8
Issue:
8
ISSN:
2513-0390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mathematical models based on systems of ordinary differential equations (ODEs) are frequently applied in various scientific fields to assess hypotheses, estimate key model parameters, and generate predictions about the system's state. To support their application, we present a comprehensive, easy‐to‐use, and flexible MATLAB toolbox,QuantDiffForecast, and associated tutorial to estimate parameters and generate short‐term forecasts with quantified uncertainty from dynamical models based on systems of ODEs. We provide software (https://github.com/gchowell/paramEstimation_forecasting_ODEmodels/) and detailed guidance on estimating parameters and forecasting time‐series trajectories that are characterized using ODEs with quantified uncertainty through a parametric bootstrapping approach. It includes functions that allow the user to infer model parameters and assess forecasting performance for different ODE models specified by the user, using different estimation methods and error structures in the data. The tutorial is intended for a diverse audience, including students training in dynamic systems, and will be broadly applicable to estimate parameters and generate forecasts from models based on ODEs. The functions included in the toolbox are illustrated using epidemic models with varying levels of complexity applied to data from the 1918 influenza pandemic in San Francisco. A tutorial video that demonstrates the functionality of the toolbox is included. 
    more » « less
  2. Abstract We introduce the Weak-form Estimation of Nonlinear Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs. Without relying on any numerical differential equation solvers, WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise. For low dimensional systems with modest amounts of data, WENDy is competitive with conventional forward solver-based nonlinear least squares methods in terms of speed and accuracy. For both higher dimensional systems and stiff systems, WENDy is typically both faster (often by orders of magnitude) and more accurate than forward solver-based approaches. The core mathematical idea involves an efficient conversion of the strong form representation of a model to its weak form, and then solving a regression problem to perform parameter inference. The core statistical idea rests on the Errors-In-Variables framework, which necessitates the use of the iteratively reweighted least squares algorithm. Further improvements are obtained by using orthonormal test functions, created from a set of$$C^{\infty }$$ C bump functions of varying support sizes.We demonstrate the high robustness and computational efficiency by applying WENDy to estimate parameters in some common models from population biology, neuroscience, and biochemistry, including logistic growth, Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark model. Software and code for reproducing the examples is available athttps://github.com/MathBioCU/WENDy. 
    more » « less
  3. Abstract The large-scale simulation of dynamical systems is critical in numerous scientific and engineering disciplines. However, traditional numerical solvers are limited by the choice of step sizes when estimating integration, resulting in a trade-off between accuracy and computational efficiency. To address this challenge, we introduce a deep learning-based corrector called Neural Vector (NeurVec), which can compensate for integration errors and enable larger time step sizes in simulations. Our extensive experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability on a continuous phase space, even when trained using limited and discrete data. NeurVec significantly accelerates traditional solvers, achieving speeds tens to hundreds of times faster while maintaining high levels of accuracy and stability. Moreover, NeurVec’s simple-yet-effective design, combined with its ease of implementation, has the potential to establish a new paradigm for fast-solving differential equations based on deep learning. 
    more » « less
  4. Rapid advancement in machine learning is increasing the demand for effective graph data analysis. However, real-world graph data often exhibits class imbalance, leading to poor performance of standard machine learning models on underrepresented classes. To address this,Class-ImbalancedLearning onGraphs (CILG) has emerged as a promising solution that combines graph representation learning and class-imbalanced learning. This survey provides a comprehensive understanding of CILG’s current state-of-the-art, establishing the first systematic taxonomy of existing work and its connections to traditional imbalanced learning. We critically analyze recent advances and discuss key open problems. A continuously updated reading list of relevant articles and code implementations is available athttps://github.com/yihongma/CILG-Papers. 
    more » « less
  5. Abstract We present a critical analysis of physics-informed neural operators (PINOs) to solve partial differential equations (PDEs) that are ubiquitous in the study and modeling of physics phenomena using carefully curated datasets. Further, we provide a benchmarking suite which can be used to evaluate PINOs in solving such problems. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our PINOs to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled PDEs. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide thesource code, an interactivewebsiteto visualize the predictions of our PINOs, and a tutorial for their use at theData and Learning Hub for Science. 
    more » « less