Silicon nitride is widely used in integrated photonics for optical nonlinear wave mixing due to its low optical losses combined with relatively high nonlinear optical properties and a wide‐range transparency window. It is known that a higher concentration of Si in silicon‐rich nitride (SRN) magnifies both the nonlinear response and optical losses, including nonlinear losses. To address the trade‐off, four‐wave mixing (FWM) is implemented in over a hundred SRN waveguides prepared by plasma‐enhanced chemical vapor deposition in a wide range of SRN refractive indices varying between 2.5 and 3.2 (measured in the C‐band). It is determined that SRN with a refractive index of about 3 maximizes the FWM efficiency for continuous‐wave operation, indicating that the refractive index of SRN is indeed a crucial optimization parameter for nonlinear optics applications. The FWM efficiency is limited by large nonlinear optical losses observed in SRN waveguides with indices larger than 2.7, which are not related to two‐photon absorption. Finally, the third‐order susceptibility and the nonlinear refractive index are estimated for multiple SRN refractive indices, and, specifically, the nonlinearities as large as and are estimated in a waveguide with an SRN refractive index of 3.2.
more »
« less
Dynamics of Nonlinear Optical Losses in Silicon‐Rich Nitride Nano‐Waveguides
Abstract Free carrier absorption (FCA) is established to be the cause of nonlinear losses in plasma‐enhanced chemical vapor deposition (PECVD) silicon‐rich nitride (SRN) waveguides. To validate this hypothesis, a photo‐induced current is measured in SRN thin films with refractive indices varying between 2.5 and 3.15 when a C‐band laser light is illuminating the SRN films at various powers, indicating the generation of free carriers. Furthermore, nonlinear loss dynamics is, for the first time, measured and characterized in detail in SRN waveguides by utilizing high peak power C‐band complex shape optical pulses for estimation of free carrier generation (FCG) and free carrier recombination (FCR) lifetimes and their dynamics. Both FCG and FCR are found to decrease with an increase in the refractive index of SRN, and, specifically, the FCR lifetimes are found (92 ± 7) ns, (39 ± 3) ns, and (31 ± 2) ns for the SRN indices of 2.7, 3, and 3.15, respectively. Lastly, nonlinear losses in high refractive index SRN waveguides are demonstrated to be minimized and altogether avoided when the pulse duration reduced below the free carrier generation lifetime, thus providing a way of taking a full advantage of the large inherent SRN nonlinear properties.
more »
« less
- PAR ID:
- 10641358
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 12
- Issue:
- 32
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Phase‐sensitive integrated photonic devices are highly susceptible to minor manufacturing deviations, resulting in significant performance inconsistencies. This variability has limited the scalability and widespread adoption of these devices. Here, a major advancement is achieved through continuous‐wave (CW) visible light (405 and 520 nm) trimming of plasma‐enhanced chemical vapor deposition (PECVD) silicon‐rich nitride (SRN) waveguides. The demonstrated method achieves precise, bidirectional refractive index tuning with a single laser source in CMOS‐compatible SRN samples with refractive indices of 2.4 and 2.9 (measured at 1550 nm). By utilizing a cost‐effective setup for real‐time resonance tracking in micro‐ring resonators, the resonant wavelength shifts as fine as 10 pm are attained. Additionally, a record red shift of 49.1 nm and a substantial blue shift of 10.6 nm are demonstrated, corresponding to refractive index changes of approximately 0.11 and −2 × 10−2. The blue and red shifts are both conclusively attributed to thermal annealing. These results highlight SRN's exceptional capability for permanent optical tuning, establishing a foundation for stable, precisely controlled performance in phase‐sensitive integrated photonic devices.more » « less
-
Abstract Optical polymer‐based integrated photonic devices are gaining interest for applications in optical packaging, biosensing, and augmented/virtual reality (AR/VR). The low refractive index of conventional organic polymers has been a barrier to realizing dense, low footprint photonic devices. The fabrication and characterization of integrated photonic devices using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers (CHIPs), which possess high refractive indices and lower optical losses compared to traditional hydrocarbon‐based polymers, are reported. These optical polymers are derived from elemental sulfur via the inverse vulcanization process, which allows for inexpensive monomers to be used for these materials. A facile fabrication strategy using CHIPs via lithography is described for single‐mode optical waveguides, Y junction splitters, multimode interferometers (MMIs), and high Q factor ring resonators, along with device characterization. Furthermore, propagation losses of 0.4 dB cm−1near 1550 nm wavelength, which is the lowest measured loss in non‐fluorinated optical polymer waveguides, coupled with the benefits of low cost materials and manufacturing are reported. Ring resonators with Q factor on the order of 6 × 104and cavity finesse of 45, which are some of the highest values reported for optical polymer‐based ring resonators, are also reported.more » « less
-
Abstract Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub‐picosecond singlet exciton lifetimes are measured in a structurally related series of infrared‐absorbing copolymers that consist of alternating cyclopentadithiophene electron‐rich “push” units and strong electron‐deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC71BM infrared photodetectors is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single‐chain excitons unquenched. The results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.more » « less
-
Abstract Applications in soft, flexible optical, and optoelectronic applications demand polymer thin film coatings that can accommodate substantial physical deformations. The preparation of high refractive index polymers (HRIPs) through the quaternization of poly(4‐vinylpyridine) (P4VP) thin films with (di)halomethanes is presented. P4VP thin films are prepared by initiated chemical vapor deposition (iCVD) and then quaternized through exposure to saturated vapors of iodomethane (CH3I), dibromomethane (CH2Br2), and diiodomethane (CH2I2), resulting in refractive indices (RI) as high as 1.67, 1.71, and 2.07, respectively (at 632.8 nm). Fourier‐transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS) confirmed the quaternization of pyridine pendant groups on the polymer chain to n‐methylpyridinium with primarily an iodide or bromide counterion, though a minor fraction of polyiodides are also detected. Additionally, these films demonstrate superior thermal stability, retaining their refractive index and thickness after thermal excursions to 200 °C. The halogenated P4VP films exhibit superior mechanical flexibility relative to conventional inorganic coatings (Al2O3and Ta2O5) and do not fracture at uniaxial tensile strains as high as 10%. This new material chemistry and fabrication approach method may enable advanced optical designs and functionality in a wide range of substrates and device architectures.more » « less
An official website of the United States government
