skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers for Integrated Photonics
Abstract Optical polymer‐based integrated photonic devices are gaining interest for applications in optical packaging, biosensing, and augmented/virtual reality (AR/VR). The low refractive index of conventional organic polymers has been a barrier to realizing dense, low footprint photonic devices. The fabrication and characterization of integrated photonic devices using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers (CHIPs), which possess high refractive indices and lower optical losses compared to traditional hydrocarbon‐based polymers, are reported. These optical polymers are derived from elemental sulfur via the inverse vulcanization process, which allows for inexpensive monomers to be used for these materials. A facile fabrication strategy using CHIPs via lithography is described for single‐mode optical waveguides, Y junction splitters, multimode interferometers (MMIs), and high Q factor ring resonators, along with device characterization. Furthermore, propagation losses of 0.4 dB cm−1near 1550 nm wavelength, which is the lowest measured loss in non‐fluorinated optical polymer waveguides, coupled with the benefits of low cost materials and manufacturing are reported. Ring resonators with Q factor on the order of 6 × 104and cavity finesse of 45, which are some of the highest values reported for optical polymer‐based ring resonators, are also reported.  more » « less
Award ID(s):
2118578
PAR ID:
10444443
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
10
Issue:
16
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High‐quality‐factor microring resonators are highly desirable in many applications. Fabricating a microring resonator typically requires delicate instruments to ensure a smooth side wall of waveguides and 100‐nm critical feature size in the coupling region. In this work, a new method “damascene soft nanoimprinting lithography” is demonstrated that can create high‐fidelity waveguide by simply backfilling an imprinted cladding template with a high refractive index polymer core. This method can easily realize high Q‐factor polymer microring resonators (e.g., ≈5 × 105around 770 nm wavelength) without the use of any expensive instruments and can be conducted in a normal lab environment. The high Q‐factors can be attributed to the residual layer‐free feature and controllable meniscus cross‐section profile of the filled polymer core. Furthermore, the new method is compatible with different polymers, yields low fabrication defects, enables new functionalities, and allows flexible substrate. These benefits can broaden the applicability of the fabricated microring resonator. 
    more » « less
  2. Abstract In this study, the first fabrication of phase‐shifted Bragg gratings utilizing chalcogenide hybrid inorganic/organic polymers (CHIPs) is presented based on poly(sulfur‐random‐(1,3‐isopropenylbenzene) to measure the thermo‐optic coefficient (TOC) of this new class of optical polymers. The unique properties ofCHIPs, such as high index contrast and low optical losses, are leveraged to fabricate Bragg gratings that enable precise determination of the TOC and glass transition temperature (Tg) of these polymers. The optical measurement introduces a novel technique to measure the TOC and Tgof optical polymers which can be difficult to determine using traditional methods such as differential scanning calorimetry (DSC) after fabrication into photonic device constructs. The findings demonstrate thatCHIPs exhibit low thermo‐optic (TO) effects, making them exceptionally well‐suited for the development of thermally stable photonic integrated circuits. 
    more » « less
  3. Chalcogenide hybrid inorganic/organic polymers (CHIPs) are a new class of optical polymeric materials for imaging and photonic applications due to their high refractive indices and high optical transmission at visible and infrared wavelengths. In this study, we characterize these polymers to study the refractive index and delve into the electronic properties by way of measurements of their dielectric constants. Ellipsometry is used to determine the refractive indices for wavelengths from 500 nm to 12 µm, while we use capacitance measurements on thin film capacitors with a range of areas to find the dielectric constant. The results are in line with expectations based on the sulfur composition of the polymers-indices range from 1.7 to 1.85, and dielectric constants range from 2.6 to 3. With these measurements, these sulfur polymer materials are established to be good candidates for optical and photonic applications, particularly with respect to telecommunications. The dielectric constants suggest that applications such as electro-optic devices and capacitors may also be viable. 
    more » « less
  4. Abstract Phase‐sensitive integrated photonic devices are highly susceptible to minor manufacturing deviations, resulting in significant performance inconsistencies. This variability has limited the scalability and widespread adoption of these devices. Here, a major advancement is achieved through continuous‐wave (CW) visible light (405 and 520 nm) trimming of plasma‐enhanced chemical vapor deposition (PECVD) silicon‐rich nitride (SRN) waveguides. The demonstrated method achieves precise, bidirectional refractive index tuning with a single laser source in CMOS‐compatible SRN samples with refractive indices of 2.4 and 2.9 (measured at 1550 nm). By utilizing a cost‐effective setup for real‐time resonance tracking in micro‐ring resonators, the resonant wavelength shifts as fine as 10 pm are attained. Additionally, a record red shift of 49.1 nm and a substantial blue shift of 10.6 nm are demonstrated, corresponding to refractive index changes of approximately 0.11 and −2 × 10−2. The blue and red shifts are both conclusively attributed to thermal annealing. These results highlight SRN's exceptional capability for permanent optical tuning, establishing a foundation for stable, precisely controlled performance in phase‐sensitive integrated photonic devices. 
    more » « less
  5. Synthetic photonic materials created by engineering the profile of refractive index or gain/loss distribution, such as negative-index metamaterials or parity-time-symmetric structures, can exhibit electric and magnetic properties that cannot be found in natural materials, allowing for photonic devices with unprecedented functionalities. In this article, we discuss two directions along this line—non-Hermitian photonics and topological photonics—and their applications in nonreciprocal light transport when nonlinearities are introduced. Both types of synthetic structures have been demonstrated in systems involving judicious arrangement of optical elements, such as optical waveguides and resonators. They can exhibit a transition between different phases by adjusting certain parameters, such as the distribution of refractive index, loss, or gain. The unique features of such synthetic structures help realize nonreciprocal optical devices with high contrast, low operation threshold, and broad bandwidth. They provide promising opportunities to realize nonreciprocal structures for wave transport. 
    more » « less