[This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] We discuss how research on student difficulties was used as a guide to develop, validate, and evaluate a Quantum Interactive Learning Tutorial (QuILT) to help students learn how to determine the completely symmetric bosonic or completely antisymmetric fermionic wave function and be able to compare and contrast them from the case when the particles can be treated as distinguishable. We discuss how explicit scaffolding is designed via guided teaching-learning sequences for two- or three-particle bosonic and fermionic systems to help students develop intuition about how to construct completely symmetric and antisymmetric wave function, both when spin part of the wave function is ignored and when both spatial and spin degrees of freedom are included. Published by the American Physical Society2025
more »
« less
This content will become publicly available on December 1, 2025
Nonconventional thermal states of interacting bosonic oligomers
There has recently been a growing effort to understand the physics and intricate dynamics of many-body and many-state (multimode) interacting bosonic systems in a comprehensive manner. For instance, in photonics, nonlinear multimode fibers are being intensely investigated nowadays due to their promise for ultrahigh-bandwidth and high-power capabilities. Similar prospects are being pursued in connection with magnon Bose-Einstein (BE) condensates, and ultracold atoms in periodic lattices for room-temperature quantum devices and quantum computation, respectively. While it is practically impossible to monitor the phase space of such complex systems (classically or quantum mechanically), thermodynamics has succeeded in predicting their thermal state: the Rayleigh-Jeans (RJ) distribution for classical fields and the BE distribution for quantum systems. These distributions are monotonic and promote either the ground state or the most excited mode. Here, we demonstrate the possibility to advance the participation of other modes in the thermal state of bosonic oligomers. The resulting nonmonotonic modal occupancies are described by a microcanonical treatment, while they deviate drastically from the RJ/BE predictions of canonical and grand-canonical ensembles. Our results provide a paradigm of ensemble equivalence violation and can be used for designing the shape of thermal states. Published by the American Physical Society2024
more »
« less
- PAR ID:
- 10641686
- Publisher / Repository:
- aps
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While the thermodynamics for bosonic systems with weak -wave interactions has been known for decades, a general and systematic extension to higher partial waves has not yet been reported. We provide closed-form expressions for the equations of state for weakly interacting systems with arbitrary partial waves in the normal phase. Thermodynamics, including contact, loss rate, and compressibility, are derived over the entire temperature regime. Our results offer an improved thermometer for ultracold atoms and molecules with weak high-partial wave interactions. Published by the American Physical Society2024more » « less
-
The Boltzmann equation is a powerful theoretical tool for modeling the collective dynamics of quantum many-body systems subject to external perturbations. Analysis of the equation gives access to linear response properties including collective modes and transport coefficients, but often proves intractable due to computational costs associated with multidimensional integrals describing collision processes. Here, we present a method to resolve this bottleneck, enabling the study of a broad class of many-body systems that appear in fundamental science contexts and technological applications. Specifically, we demonstrate that a Gaussian mixture model can accurately represent equilibrium distribution functions, thereby allowing efficient evaluation of collision integrals. Inspired by cold atom experiments, we apply this method to investigate the collective behavior of a quantum Bose-Fermi mixture of cold atoms in a cigar-shaped trap, a system that is particularly challenging to analyze. We focus on monopole and quadrupole collective modes above the Bose-Einstein transition temperature, and find a rich phenomenology that spans interference effects between bosonic and fermionic collective modes, dampening of these modes, and the emergence of hydrodynamics in various parameter regimes. These effects are readily verifiable experimentally. Published by the American Physical Society2024more » « less
-
Quantum memory devices with high storage efficiency and bandwidth are essential elements for future quantum networks. Solid-state quantum memories can provide broadband storage, but they primarily suffer from low storage efficiency. We use passive optimization and algorithmic optimization techniques to demonstrate nearly a sixfold enhancement in quantum memory efficiency. In this regime, we demonstrate coherent and single-photon-level storage with a high signal-to-noise ratio. The optimization technique presented here can be applied to most solid-state quantum memories to significantly improve the storage efficiency without compromising the memory bandwidth. Published by the American Physical Society2024more » « less
-
We investigate the quantum many-body dynamics of bosonic atoms hopping in a two-leg ladder with strong on-site contact interactions. We observe that when the atoms are prepared in a staggered pattern with pairs of atoms on every other rung, singlon defects, i.e., rungs with only one atom, can localize due to an emergent topological model, even though the underlying model in the absence of interactions admits only topologically trivial states. This emergent topological localization results from the formation of a zero-energy edge mode in an effective lattice formed by two adjacent chains with alternating strong and weak hoping links (Su-Schrieffer-Heeger chains) and opposite staggering which interface at the defect position. Our findings open the opportunity to dynamically generate nontrivial topological behaviors without the need for complex Hamiltonian engineering. Published by the American Physical Society2025more » « less
An official website of the United States government
