Uplift of the overriding plate at a subduction zone denotes interseismic strain accumulation, which is subsequently released during a megathrust earthquake. Although most interseismic strain is thought to be released elastically, observations of uplifted coastal regions at subduction zones worldwide indicate that some strain may result in permanent uplift. The Grays Harbor and Willapa Bay (Washington, USA) coastal region of the Cascadia subduction zone hosts flights of marine terraces testifying to late Pleistocene rock uplift. Our new detailed mapping of the marine terraces recognizes nine new units, including estuarine and fluvial sediments. Luminescence dating, relative age based on soil maturity and terrace elevation, and an evaluation of previous ages from fossil shells collectively constrain the probable ages of three estuarine units to sea-level high stands during Marine Isotope Stages 5a, 5c, and 5e. We estimate an average uplift rate of 0.4 ± 0.1 mm/yr for the terraced estuarine units, consistent with other Pleistocene uplift and incision rates in Cascadia. When compared with observed interseismic vertical deformation, these rates suggest that about one-tenth of interseismic strain may become permanent. The values are permissible within the uncertainties of uplift based on regional estimates of interseismic vertical strain rates and of coseismic subsidence.
more »
« less
Megathrust locking encoded in subduction landscapes
Locked areas of subduction megathrusts are increasingly found to coincide with landscape features sculpted over hundreds of thousand years, yet the mechanisms that underlie such correlations remain elusive. We show that interseismic locking gradients induce increments of irreversible strain across the overriding plate manifested predominantly as distributed seismicity. Summing these increments over hundreds of earthquake cycles produces a spatially variable field of uplift representing the unbalance of co-, post-, and interseismic strain. This long-term uplift explains first-order geomorphological features of subduction zones such as the position of the continental erosive shelf break, the distribution of marine terraces and peninsulas, and the profile of forearc rivers. Inelastic yielding of the forearc thus encodes short-term locking patterns in subduction landscapes, hinting that megathrust locking is stable over multiple earthquake cycles and highlighting the role geomorphology can play in constraining Earth’s greatest source of seismic hazard.
more »
« less
- Award ID(s):
- 2311208
- PAR ID:
- 10641716
- Publisher / Repository:
- Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 17
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Subduction zones host some of Earth's most damaging natural hazards, including megathrust earthquakes and earthquake‐induced tsunamis. A major control on the initiation and rupture characteristics of subduction megathrust earthquakes is how the coupled zone along the subduction interface accumulates elastic strain between events. We present results from observations of slow slip events (SSEs) in Cascadia occurring during the interseismic period downdip of the fully coupled zone, which imply that the orientation of strain accumulation within the coupled zone can vary with depth. Interseismic GPS motions suggest that forces derived from relative plate motions across a shallow, offshore locked plate interface dominate over decadal timescales. Deeper on the plate interface, below the locked (seismogenic) patch, slip during SSEs dominantly occurs in the updip direction, reflecting a dip‐parallel force acting on the slab, such as slab pull. This implies that in subduction zones with obliquely convergent plate motions, the seismogenic zone of the megathrust is loaded by forces acting in two discrete directions, leading to a depth‐varying orientation of strain accumulation on the plate interface.more » « less
-
Abstract Tectonic and seismogenic variations in subduction forearcs can be linked through various processes associated with subduction. Along the Cascadia forearc, significant variations between different geologic expressions of subduction appear to correlate, such as episodic tremor-and-slip (ETS) recurrence interval, intraslab seismicity, slab dip, uplift and exhumation rates, and topography, which allows for the systematic study of the plausible controlling mechanisms behind these variations. Even though the southern Cascadia forearc has the broadest topographic expression and shortest ETS recurrence intervals along the margin, it has been relatively underinstrumented with modern seismic equipment. Therefore, better seismic images are needed before robust comparisons with other portions of the forearc can be made. In March 2020, we deployed the Southern Cascadia Earthquake and Tectonics Array throughout the southern Cascadia forearc. This array consisted of 60 continuously recording three-component nodal seismometers with an average station spacing of ∼15 km, and stations recorded ∼38 days of data on average. We will analyze this newly collected nodal dataset to better image the structural characteristics and constrain the seismogenic behavior of the southern Cascadia forearc. The main goals of this project are to (1) constrain the precise location of the plate interface through seismic imaging and the analysis of seismicity, (2) characterize the lower crustal architecture of the overriding forearc crust to understand the role that this plays in enabling the high nonvolcanic tremor density and short episodic slow-slip recurrence intervals in the region, and (3) attempt to decouple the contributions of subduction versus San Andreas–related deformation to uplift along this particularly elevated portion of the Cascadia forearc. The results of this project will shed light on the controlling mechanisms behind heterogeneous ETS behavior and variable forearc surficial responses to subduction in Cascadia, with implications for other analogous subduction margins.more » « less
-
Abstract Interseismic coupling maps and, especially, estimates of the location of the fully coupled (locked) zone relative to the trench, coastline, and slow slip events are crucial for determining megathrust earthquake hazard at subduction zones. We present an interseismic coupling inversion that estimates the locations of the upper and lower boundaries of the locked zone, the lower boundary of the deep transition zone, and downdip gradient of creep rate in the transition from locked to freely creeping in the downdip transition zone. We show that the locked zone at Cascadia is west of the coastline and 10 km updip of the slow slip zone along much of the margin, widest (25–125 km, extending to ∼19 km depth) in northern Cascadia, narrowest (0–70 km) in central Cascadia, with moment accumulation rate equivalent to a Mw8.71 and Mw8.85 earthquake for 300‐ and 500‐year earthquake cycles. We find a steep gradient in creep immediately below the locked zone, indicative of propagating creep, along the entire margin. At Nankai, we find three distinct zones of locking (offshore Shikoku, offshore southeast Kii peninsula, and offshore Shima peninsula) with a total moment accumulation rate equivalent to a Mw8.70 earthquake for a 150‐year earthquake cycle. The bottom of the locked zone is nearly under the coastline for all three locked regions at Nankai and is positioned 0–5 km updip of the slow slip zone. In contrast with Cascadia, creep rate gradients below the locked zone at Nankai are generally gradual, consistent with stationary locking.more » « less
-
Abstract Shallow slow-slip events (SSEs) contribute to strain release near the shallow portions of subduction interfaces and may contribute to promoting shallow subduction earthquakes. Recent efforts in offshore monitoring of shallow SSEs have provided evidence of possible interactions between shallow SSEs and megathrust earthquakes. In this study, we use a dynamic earthquake simulator that captures both quasi-static (for SSEs) and dynamic (for megathrust earthquakes) slip to explore their interactions and implications for seismic and tsunami hazards. We model slip behaviors of a shallow-dipping subduction interface on which two locally locked patches (asperities) with different strengths are embedded within a conditionally stable zone. We find that both SSEs and earthquakes can occur, and they interact over multiple earthquake cycles in the model. Dynamic ruptures can nucleate on the asperities and propagate into the surrounding conditionally stable zone at slow speeds, generating tsunami earthquakes. A clear correlation emerges between the size of an earthquake and SSE activities preceding it. Small earthquakes rupture only the low-strength asperity, whereas large earthquakes rupture both. Before a large earthquake, periodic SSEs occur around the high-strength asperity, gradually loading stress into its interior. The critically stressed high-strength asperity can be ruptured together with the low-strength one in the large earthquake, followed by a relatively quiet interseismic period with very few SSEs and then a small earthquake. An SSE may or may not directly lead to nucleation of an earthquake, depending on whether a nearby asperity is ready for spontaneously dynamic failure. In addition, because of different SSE activities, the coupling degree may change dramatically between different interseismic periods, suggesting that its estimate based on a short period of observation may be biased.more » « less
An official website of the United States government

