skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Copper Phthalocyanine for Designing a Highly Selective and Disposable Electrochemical Volatile Organic Compound (VOC) Sensor
Abstract Formic acid (FA) is one of the very important organic acids that has been widely used in various industries. The highly corrosive FA can have severe adverse effects on the surrounding environment. Here, we developed an electrochemical sensor that utilizes the material properties of multi‐walled carbon nanotubes (MWCNTs), and copper phthalocyanine (CuPc) for the real‐time detection of FA gas. The response of FA has been compared with the responses of 9 common volatile organic compounds (VOCs). The chronoamperometry (CA) results revealed a high selectivity towards FA by showing an increase in the sensor current by about 25 %, in contrast to the decrease of the current in response to the other VOCs. The sensitivity of the CuPc device to FA was calculated to be 38.85 mAM−1. Material characterization (SEM, EDX, FTIR, Raman, and UV‐vis) also strongly suggests a protonation mechanism caused by the carboxylic acid group, which enhances the electrical conductivity.  more » « less
Award ID(s):
2343806 1953089
PAR ID:
10641787
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Analysis & Sensing
Volume:
5
Issue:
1
ISSN:
2629-2742
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There are advantages to polymer/nanoparticle composite‐based volatile organic compounds (VOCs) sensors, such as high chemical and physical stability, operability under extreme conditions, flexible use in manufacturing, and low cost. Nevertheless, their lower limit of detection due to thickness‐dependent diffusion has constrained their application. Inspired by the metaxylem in vascular plants and its vertical conduits and horizontal pits that enable efficient transpiration, a polymer/nanoparticle composite‐based sensor is fabricated with a controllable, spontaneously formed, hollow core for inline VOCs transportation, and porous microstructure for radial direction diffusion. The hollow core is surrounded by an inner porous layer (thermoplastic polyurethane (TPU)), a middle sensing layer (TPU/graphene nanoplatelets/multiwalled carbon nanotubes), and an outer mechanically durable layer (TPU). This multilayered structure shows a 600% higher response rate compared to a single‐layered composite fiber sensor, with a low limit of detection (e.g., ≈15 ppm for xylene) and high selectivity based on the Flory–Huggins interaction parameter. This flexible and stretchable sensor also demonstrates a dual parameter sensing capability from VOC concentrations and uniaxial strain deformation. Via a one‐step fiber spinning procedure, this self‐induced hollow fiber offers a unique method of microstructural design, which enables the detection of low‐concentration VOCs by polymer/nanoparticle‐based sensors. 
    more » « less
  2. RationaleFree fatty acids and lipid classes containing fatty acid esters are major components of lipidome. In the absence of a chemical derivatization step, FA anions do not yield all of the structural information that may be of interest under commonly used collision‐induced dissociation (CID) conditions. A line of work that avoids condensed‐phase derivatization takes advantage of gas‐phase ion/ion chemistry to charge invert FA anions to an ion type that provides the structural information of interest using conventional CID. This work was motivated by the potential for significant improvement in overall efficiency for obtaining FA chain structural information. MethodsA hybrid triple quadrupole/linear ion‐trap tandem mass spectrometer that has been modified to enable the execution of ion/ion reaction experiments was used to evaluate the use of 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine (ttb‐Terpy) as the ligand in divalent magnesium complexes for charge inversion of FA anions. ResultsMg(ttb‐Terpy)22+complexes provide significantly improved efficiency in producing structurally informative products from FA ions relative to Mg(Terpy)22+complexes, as demonstrated for straight‐chain FAs, branched‐chain FAs, unsaturated FAs, and cyclopropane‐containing FAs. It was discovered that most of the structurally informative fragmentation from [FA‐H + Mg(ttb‐Terpy)]+results from the loss of a methyl radical from the ligand followed by radical‐directed dissociation (RDD), which stands in contrast to the charge‐remote fragmentation (CRF) believed to be operative with the [FA‐H + Mg(Terpy)]+ions. ConclusionsThis work demonstrates that a large fraction of product ions from the CID of ions of the form [FA‐H + Mg(ttb‐Terpy)]+are derived from RDD of the FA backbone, with a very minor fraction arising from structurally uninformative dissociation channels. This ligand provides an alternative to previously used ligands for the structural characterization of FAs via CRF. 
    more » « less
  3. ABSTRACT Increased fluctuating asymmetry, or random differences between right and left sides, has been associated with developmental stress or developmental instability. This study examines fluctuating asymmetry (FA) of mesio‐distal and bucco‐lingual dimensions of deciduous maxillary molars (m1, m2), and permanent maxillary premolars and molars (P3, P4, M1, M2) of 466 rhesus macaques (Macaca mulatta) born between 1950 and 2018 from Cayo Santiago (CS), Puerto Rico. All included individuals were of known age, sex, birth year, and matriline. We assess whether a secular trend occurs in FA over a 68‐year period, sex differences in FA, and whether environmental or management factors in the colony history resulted in decreased FA. Regression of FA on birth year tested for a secular trend in FA. A mixed‐model two‐way analysis of variance was used to test for the influence of food supplementation, tetanus vaccination and hurricane experience during dental development on FA. Differences across matrilines in response to the management or environmental factors were tested by ANOVA. There was no significant secular trend in FA. There was limited reduction of FA with implementation of the high protein diet, and limited support for the decreased FA associated with the implementation of tetanus vaccination. There is also limited difference in dental FA associated with exposure to a hurricane during dental development. Matrilineal differences in FA were observed for several teeth. The free‐ranging environment of Cayo Santiago is a complex environment, with many factors influencing the development of young rhesus macaques. While the introduction of a high protein diet or the implementation of a tetanus vaccination program may have improved individual health overall, there are likely other factors that may cause developmental stress and result in dental FA. 
    more » « less
  4. IntroductionVolatile organic compounds (VOCs) are small, low-vapor-pressure molecules emitted from the surface ocean into the atmosphere. In the atmosphere, VOCs can change OH reactivity and condense onto particles to become cloud condensation nuclei. VOCs are produced by phytoplankton, but the conditions leading to VOC accumulation in the surface ocean are poorly understood. MethodsIn this study, VOC accumulation was measured in real time over a 12 h day−12 h night cycle in the model diatomPhaeodactylum tricornutumduring exponential growth. ResultsSixty-threem/zsignals were produced in higher concentrations than in cell-free controls. All VOCs, except methanol, were continuously produced over 24 h. All VOCs accumulated to higher concentrations during the day compared to the night, and 11 VOCs exhibited distinct accumulation patterns during the morning hours. Twenty-seven VOCs were associated with known metabolic pathways inP. tricornutum, with most VOCs involved in amino acid and fatty acid metabolism. DiscussionPatterns of VOC production were strongly associated with diel shifts in cell physiology and the cell cycle. Diel VOC production patterns give a fundamental understanding of the first steps in VOC accumulation in the surface ocean. 
    more » « less
  5. Abstract Temperature effects on the fatty acid (FA) profiles of phytoplankton, major primary producers in the ocean, have been widely studied due to their importance as industrial feedstocks and to their indispensable role as global producers of long‐chain, polyunsaturated FA (PUFA), including omega‐3 (ω3) FA required by organisms at higher trophic levels. The latter is of global ecological concern for marine food webs, as some evidence suggests an ongoing decline in global marine‐derived ω3 FA due to both a global decline in phytoplankton abundance and to a physiological reduction in ω3 production by phytoplankton as temperatures rise. Here, we examined both short‐term (physiological) and long‐term (evolutionary) responses of FA profiles to temperature by comparing FA thermal reaction norms of the marine diatomThalassiosira pseudonanaafter ~500 generations (ca. 2.5 years) of experimental evolution at low (16°C) and high (31°C) temperatures. We showed that thermal reaction norms for some key FA classes evolved rapidly in response to temperature selection, often in ways contrary to our predictions based on prior research. Notably, 31°C‐selected populations showed higher PUFA percentages (including ω3 FA) than 16°C‐selected populations at the highest assay temperature (31°C, aboveT. pseudonana'soptimum temperature for population growth), suggesting that high‐temperature selection led to an evolved ability to sustain high PUFA production at high temperatures. Rapid evolution may therefore mitigate some of the decline in global phytoplankton‐derived ω3 FA production predicted by recent studies. Beyond its implications for marine food webs, knowledge of the effects of temperature on fatty acid profiles is of fundamental importance to our understanding of the mechanistic causes and consequences of thermal adaptation. 
    more » « less