skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 25, 2026

Title: Dynamics and clustering of sedimenting disc lattices
Uniform arrays of particles tend to cluster as they sediment in viscous fluids. Shape anisotropy of the particles enriches this dynamics by modifying the mode structure and the resulting instabilities of the array. A one-dimensional lattice of sedimenting spheroids in the Stokesian regime displays either an exponential or an algebraic rate of clustering depending on the initial lattice spacing (Chajwaet al.2020Phys.Rev.Xvol. 10, pp. 041016). This is caused by an interplay between the Crowley mechanism, which promotes clumping, and a shape-induced drift mechanism, which subdues it. We theoretically and experimentally investigate the sedimentation dynamics of one-dimensional lattices of oblate spheroids or discs and show a stark difference in clustering behaviour: the Crowley mechanism results in clumps comprising several spheroids, whereas the drift mechanism results in pairs of spheroids whose asymptotic behaviour is determined by pair–hydrodynamic interactions. We find that a Stokeslet, or point-particle, approximation is insufficient to accurately describe the instability and that the corrections provided by the first reflection are necessary for obtaining some crucial dynamical features. As opposed to a sharp boundary between exponential growth and neutral eigenvalues under the Stokeslet approximation, the first-reflection correction leads to exponential growth for all initial perturbations, but far more rapid algebraic growth than exponential growth at large dimensionless lattice spacing$$\tilde {d}$$. For discs with aspect ratio$$0.125$$, corresponding to the experimental value, the instability growth rate is found to decrease with increasing lattice spacing$$\tilde {d}$$, approximately as$$\tilde {d}^{ -4.5}$$, which is faster than the$$\tilde {d}^{-2}$$for spheres (Crowley 1971J.FluidMech.vol. 45, pp. 151–159). It is shown that the first-reflection correction has a stabilising effect for small lattice spacing and a destabilising effect for large lattice spacing. Sedimenting pairs predominantly come together to form an inverted ‘T’, or ‘$$\perp$$’, which our theory accounts for through an analysis that builds on Koch & Shaqfeh (1989J.FluidMech. vol. 209, pp. 521–542). This structure remains stable for a significant amount of time.  more » « less
Award ID(s):
2319881
PAR ID:
10642516
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
1017
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe the rising trajectory of bubbles in isotropic turbulence and quantify the slowdown of the mean rise velocity of bubbles with sizes within the inertial subrange. We perform direct numerical simulations of bubbles, for a wide range of turbulence intensity, bubble inertia and deformability, with systematic comparison with the corresponding quiescent case, with Reynolds number at the Taylor microscale from 38 to 77. Turbulent fluctuations randomise the rising trajectory and cause a reduction of the mean rise velocity$$\tilde {w}_b$$compared with the rise velocity in quiescent flow$$w_b$$. The decrease in mean rise velocity of bubbles$$\tilde {w}_b/w_b$$is shown to be primarily a function of the ratio of the turbulence intensity and the buoyancy forces, described by the Froude number$$Fr=u'/\sqrt {gd}$$, where$$u'$$is the root-mean-square velocity fluctuations,$$g$$is gravity and$$d$$is the bubble diameter. The bubble inertia, characterised by the ratio of inertial to viscous forces (Galileo number), and the bubble deformability, characterised by the ratio of buoyancy forces to surface tension (Bond number), modulate the rise trajectory and velocity in quiescent fluid. The slowdown of these bubbles in the inertial subrange is not due to preferential sampling, as is the case with sub-Kolmogorov bubbles. Instead, it is caused by the nonlinear drag–velocity relationship, where velocity fluctuations lead to an increased average drag. For$$Fr > 0.5$$, we confirm the scaling$$\tilde {w}_b / w_b \propto 1 / Fr$$, as proposed previously by Ruthet al.(J. Fluid Mech., vol. 924, 2021, p. A2), over a wide range of bubble inertia and deformability. 
    more » « less
  2. Abstract Designing an algorithm with a singly exponential complexity for computing semialgebraic triangulations of a given semialgebraic set has been a holy grail in algorithmic semialgebraic geometry. More precisely, given a description of a semialgebraic set$$S \subset \mathbb {R}^k$$by a first-order quantifier-free formula in the language of the reals, the goal is to output a simplicial complex$$\Delta $$, whose geometric realization,$$|\Delta |$$, is semialgebraically homeomorphic toS. In this paper, we consider a weaker version of this question. We prove that for any$$\ell \geq 0$$, there exists an algorithm which takes as input a description of a semialgebraic subset$$S \subset \mathbb {R}^k$$given by a quantifier-free first-order formula$$\phi $$in the language of the reals and produces as output a simplicial complex$$\Delta $$, whose geometric realization,$$|\Delta |$$is$$\ell $$-equivalent toS. The complexity of our algorithm is bounded by$$(sd)^{k^{O(\ell )}}$$, wheresis the number of polynomials appearing in the formula$$\phi $$, andda bound on their degrees. For fixed$$\ell $$, this bound issingly exponentialink. In particular, since$$\ell $$-equivalence implies that thehomotopy groupsup to dimension$$\ell $$of$$|\Delta |$$are isomorphic to those ofS, we obtain a reduction (having singly exponential complexity) of the problem of computing the first$$\ell $$homotopy groups ofSto the combinatorial problem of computing the first$$\ell $$homotopy groups of a finite simplicial complex of size bounded by$$(sd)^{k^{O(\ell )}}$$. 
    more » « less
  3. Large-eddy simulation was used to model turbulent atmospheric surface layer (ASL) flow over canopies composed of streamwise-aligned rows of synthetic trees of height,$$h$$, and systematically arranged to quantify the response to variable streamwise spacing,$$\delta _1$$, and spanwise spacing,$$\delta _2$$, between adjacent trees. The response to spanwise and streamwise heterogeneity has, indeed, been the topic of a sustained research effort: the former resulting in formation of Reynolds-averaged counter-rotating secondary cells, the latter associated with the$$k$$- and$$d$$-type response. No study has addressed the confluence of both, and results herein show secondary flow polarity reversal across ‘critical’ values of$$\delta _1$$and$$\delta _2$$. For$$\delta _2/\delta \lesssim 1$$and$$\gtrsim 2$$, where$$\delta$$is the flow depth, the counter-rotating secondary cells are aligned such that upwelling and downwelling, respectively, occurs above the elements. The streamwise spacing$$\delta _1$$regulates this transition, with secondary cell reversal occurring first for the largest$$k$$-type cases, as elevated turbulence production within the canopy necessitates entrainment of fluid from aloft. The results are interpreted through the lens of a benchmark prognostic closure for effective aerodynamic roughness,$$z_{0,{Eff.}} = \alpha \sigma _h$$, where$$\alpha$$is a proportionality constant and$$\sigma _h$$is height root mean square. We report$$\alpha \approx 10^{-1}$$, the value reported over many decades for a broad range of rough surfaces, for$$k$$-type cases at small$$\delta _2$$, whereas the transition to$$d$$-type arrangements necessitates larger$$\delta _2$$. Though preliminary, results highlight the non-trivial response to variation of streamwise and spanwise spacing. 
    more » « less
  4. Dynamic stall at low Reynolds numbers,$$Re \sim O(10^4)$$, exhibits complex flow physics with co-existing laminar, transitional and turbulent flow regions. Current state-of-the-art stall onset criteria use parameters that rely on flow properties integrated around the leading edge. These include the leading edge suction parameter or$$LESP$$(Rameshet al.,J. Fluid Mech., vol. 751, 2014, pp. 500–538) and boundary enstrophy flux or$$BEF$$(Sudharsanet al.,J. Fluid Mech., vol. 935, 2022, A10), which have been found to be effective for predicting stall onset at moderate to high$$Re$$. However, low-$$Re$$flows feature strong vortex-shedding events occurring across the entire airfoil surface, including regions away from the leading edge, altering the flow field and influencing the onset of stall. In the present work, the ability of these stall criteria to effectively capture and localize these vortex-shedding events in space and time is investigated. High-resolution large-eddy simulations for an SD7003 airfoil undergoing a constant-rate, pitch-up motion at two$$Re$$(10 000 and 60 000) and two pitch rates reveal a rich variety of unsteady flow phenomena, including instabilities, transition, vortex formation, merging and shedding, which are described in detail. While stall onset is reflected in both$$LESP$$and$$BEF$$, local vortex-shedding events are identified only by the$$BEF$$. Therefore,$$BEF$$can be used to identify both dynamic stall onset and local vortex-shedding events in space and time. 
    more » « less
  5. Abstract We give an explicit raising operator formula for the modified Macdonald polynomials$$\tilde {H}_{\mu }(X;q,t)$$, which follows from our recent formula for$$\nabla $$on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of symmetric functions$$\tilde {H}^{1,n}(X;q,t)$$that we call$$1,n$$-Macdonald polynomials, which reduce to a scalar multiple of$$\tilde {H}_{\mu }(X;q,t)$$when$$n=1$$. We conjecture that the coefficients of$$1,n$$-Macdonald polynomials in terms of Schur functions belong to$${\mathbb N}[q,t]$$, generalizing Macdonald positivity. 
    more » « less