We report the first evidence for the transition with a significance of 3.5 standard deviations. The decay branching fraction is measured to be , which is noticeably smaller than expected. We also set upper limits on transitions of , and , at the 90% confidence level. These results are obtained with a data sample collected near the resonance with the Belle detector at the KEKB asymmetric-energy collider. Published by the American Physical Society2024
more »
« less
This content will become publicly available on March 1, 2026
Dynamic compression effects of H2O in a dynamic diamond anvil cell: Origin of metastable ice VII and its crystal growth kinetics
We report on the structural verification of metastable ice VII solidifying in the phase space of ice VI at 1.80 GPa at room temperature. Using time-resolved (TR) x-ray diffraction and TR ruby luminescence paired with high-speed microphotography utilizing a dynamic diamond anvil cell, an initial compression rate range from 0.12 to 95.84 GPa/s was explored. The solidification pressure of metastable ice VII has a potential sigmoidal dependence upon compression rate with a turnover compression rate of ∼80 GPa/s. The preferred crystallization of ice VII in the stability field of ice VI is due to the increased nucleation rate of ice VII over ice VI at 1.77 GPa that is driven by the surface energy difference between the liquid and solid phases along with the change in Gibbs free energy of solidification. The dynamic pressure-volume–compression behaviors of ice phases (VI and VII) show a lattice stiffening in both phases, especially during the compression loading. It is also found that the compression rate greatly affects the solid-solid phase transition between ice VI and VII but does not affect the liquid-solid transition between water and ice VI as much. Lastly, a third phase transition was found to occur after metastable ice VII transforms into high-density amorphous (HDA) ice, which could be a disordered hydrogen-bonded network configuration of ice VII forming out of HDA ice facilitated by the decoupling of the oxygen movement and reorientation of the molecule. These results demonstrate the complexity of a seemingly simple molecule , how it can readily change its static properties with the modification of (de)compression rate, and highlight the need to use multiple TR structural and spectroscopic probes at higher time resolutions to realize the most comprehensive understanding.
more »
« less
- PAR ID:
- 10642536
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 111
- Issue:
- 10
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wurtzite ferroelectrics are attractive for microelectronics applications due to their chemical and structural compatibility with wurtzite semiconductors, such as and . However, the leakage current in epitaxial stacks reported to date should be reduced for reliable device operation. Here, we demonstrate low leakage current in epitaxial films on with well-saturated ferroelectric hysteresis loops that are orders of magnitude lower (i.e., 0.07 A ) than previously reported films (1–19 A ) having similar or better structural characteristics. We also show that, for these high-quality epitaxial films, structural quality (edge and screw dislocations), as measured by diffraction techniques, is not the dominant contributor to leakage. Instead, the small leakage in our films is limited by thermionic emission across the interfaces, which is distinct from the large leakage due to trap-mediated bulk transport in the previously reported films. To support this conclusion, we show that on lattice-matched buffers with improved structural characteristics but higher interface roughness exhibit increased leakage characteristics. This demonstration of low leakage current in heteroepitaxial films and understanding of the importance of interface barrier and surface roughness can guide further efforts toward improving the reliability of wurtzite ferroelectric devices. Published by the American Physical Society2025more » « less
-
We search for excited charmed baryons in the system using a data sample corresponding to an integrated luminosity of . The data were collected by the Belle detector at the KEKB asymmetric-energy collider. No significant signals are found in the mass spectrum, including the known and . Clear and signals are observed in the mass spectrum. We set upper limits at 90% credibility level on ratios of branching fractions of and decaying to relative to of for the and for the . We measure ratios of branching fractions of and decaying to relative to of for the and for the . Published by the American Physical Society2024more » « less
-
film coatings have the potential to drastically improve the accelerating performance of Nb superconducting radiofrequency (SRF) cavities in next-generation linear particle accelerators. Unfortunately, persistent stoichiometric material defects formed during fabrication limit the cryogenic operating temperature and accelerating gradient by nucleating magnetic vortices that lead to premature cavity quenching. The SRF community currently lacks a predictive model that can explain the impact of chemical and morphological properties of defects on vortex nucleation and maximum accelerating gradients. Both experimental and theoretical studies of the material and superconducting properties of the first 100 nm of surfaces are complicated by significant variations in the volume distribution and topography of stoichiometric defects. This work contains a coordinated experimental study with supporting simulations to identify how the observed chemical composition and morphology of certain Sn-rich and Sn-deficient surface defects can impact the SRF performance. films were prepared with varying degrees of stoichiometric defects, and the film surface morphologies were characterized. Both Sn-rich and Sn-deficient regions were identified in these samples. For Sn-rich defects, we focus on elemental Sn islands that are partially embedded into the film. Using finite element simulations of the time-dependent Ginzburg-Landau equations, we estimate vortex nucleation field thresholds at Sn islands of varying size, geometry, and embedment. We find that these islands can lead to significant SRF performance degradation that could not have been predicted from the ensemble stoichiometry alone. For Sn-deficient surfaces, we experimentally identify a periodic nanoscale surface corrugation that likely forms because of extensive Sn loss from the surface. Simulation results show that the surface corrugations contribute to the already substantial drop in the vortex nucleation field of Sn-deficient surfaces. This work provides a systematic approach for future studies to further detail the relationship between experimental growth conditions, stoichiometric defects, geometry, and vortex nucleation. These findings have technical implications that will help guide improvements to fabrication procedures. Our outlined experiment-informed theoretical methods can assist future studies in making additional key insights about stoichiometric defects that will help build the next generation of SRF cavities and support related superconducting materials development efforts. Published by the American Physical Society2024more » « less
-
The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high ) hadron trigger in proton-proton and central Pb-Pb collisions at . A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter , 0.4, and 0.5 in the range and trigger-recoil jet azimuthal separation . The measurements exhibit a marked medium-induced jet yield enhancement at low and at large azimuthal deviation from . The enhancement is characterized by its dependence on , which has a slope that differs from zero by . Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation. © 2024 CERN, for the ALICE Collaboration2024CERNmore » « less
An official website of the United States government
