skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intensive primary forest loss on the island of Hispaniola from 1996 to 2022
Primary forest (PF) is critical in supporting biodiversity and mitigating greenhouse gas emissions. However, the continuous monitoring of PF loss through remote sensing time-series observations remains largely unexplored, particularly in undeveloped and developing countries. In this study, we use the COntinuous monitoring of Land Disturbance (COLD) algorithm and Landsat time-series data to quantify PF loss on the island of Hispaniola, including Haiti and the Dominican Republic, from 1996 to 2022. The major findings include: (1) Haiti experienced a more pronounced PF loss compared to the Dominican Republic despite its lower PF coverage. From 1996 to 2022, PF in Haiti decreased from 0.64% to 0.35%, while PF in Dominican Republic decreased from 7.17% to 4.89%. (2) PF loss is observed both inside and outside protected areas. In Haiti, more PF loss occurs within protected areas than outside those areas. In the Dominican Republic, PF loss rates inside and outside protected areas are comparable. (3) The mean topographic slope of PF shows an increasing trend through time in both Haiti and Dominican Republic, suggesting slope plays a key role in PF loss. Despite the disparities between Haiti and Dominican Republic in preserving PF, urgent conservation policies are needed for the whole island. The land cover maps framework can be extended beyond the island of Hispaniola to larger regions for evaluating the impacts of PF loss on biodiversity conservation and ecosystem services.  more » « less
Award ID(s):
2326013
PAR ID:
10642686
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AGU Fall Meeting 2023, Session: Biogeosciences, 2023AGUFM.B52C..08H
Date Published:
Format(s):
Medium: X
Location:
San Francisco, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Land conservation and increased carbon uptake on land are fundamental to achieving the ambitious targets of the climate and biodiversity conventions. Yet, it remains largely unknown how such ambitions, along with an increasing demand for agricultural products, could drive landscape-scale changes and affect other key regulating nature’s contributions to people (NCP) that sustain land productivity outside conservation priority areas. By using an integrated, globally consistent modelling approach, we show that ambitious carbon-focused land restoration action and the enlargement of protected areas alone may be insufficient to reverse negative trends in landscape heterogeneity, pollination supply, and soil loss. However, we also find that these actions could be combined with dedicated interventions that support critical NCP and biodiversity conservation outside of protected areas. In particular, our models indicate that conserving at least 20% semi-natural habitat within farmed landscapes could primarily be achieved by spatially relocating cropland outside conservation priority areas, without additional carbon losses from land-use change, primary land conversion or reductions in agricultural productivity. 
    more » « less
  2. Black-throated blue warbler (Setophaga caerulescens) populations have been declining at the southern edge of the breeding range in North Carolina over the past two decades. Determining the causes of population declines in migratory species requires knowledge of the threats faced throughout the entire annual cycle, necessitating accurate information about the migratory routes and non-breeding areas used by birds. We used light-level geolocators to identify the fall migratory routes and non-breeding distributions of adults breeding at the southern edge of the range in North Carolina (n = 5), where populations are declining, and at the core of the range in New Hampshire (n = 8), where populations are stable. The strength of migratory connectivity was moderate (mean = 0.42). New Hampshire birds used non-breeding areas broadly distributed across the Caribbean, whereas North Carolina birds used a restricted non-breeding area largely in the Dominican Republic. Suitable forest cover declined at a higher rate from 2000 to 2019 in the Dominican Republic than in other Caribbean countries (8.4% vs. 2–4% loss), exposing birds from the trailing edge to significantly higher suitable habitat loss on the non-breeding grounds compared with range-core birds. Birds from the two study populations also exhibited differing migratory routes, with North Carolina birds migrating south through Florida and many New Hampshire birds performing an overwater flight from the Carolinas to the Caribbean. Our results suggest the possibility that, at least for this species, forest loss on the island of Hispaniola could be exacerbating population declines at the southern edge of the breeding range in North Carolina. 
    more » « less
  3. Primary forests play a crucial role in providing essential ecosystem services and supporting biodiversity compared to secondary forests. With increasing threats from extreme climate events and human activities, monitoring primary forest loss is critical for understanding the impact of these threats on ecosystems and biodiversity. Dense time series data from remotely sensed satellite imagery allow us to track historical disturbances, making it an effective source for mapping primary forests over time. However, distinguishing between primary and secondary forests based on spectral-temporal information remains challenging as primary forests can show high resilience to certain natural disturbances (e.g., drought), and secondary forests may not have experienced any disturbance during the satellite observation period. In this context, this study aims to map primary forests on the Caribbean island of Hispaniola using the time series approach and resilience metrics given that primary forests tend to be more resilient than secondary forests. To achieve this, we used spectral-temporal features from COntinuous monitoring of Land Disturbance (COLD) algorithm based on all available Landsat data between 1984 and 2023. Additionally, a resilience map is generated from deseasonalized and detrended spectral observations using the lag-1 autocorrelation method. Then, a Random Forest model was employed to generate an annual primary forest map. 
    more » « less
  4. null (Ed.)
    In 2009, the University of Alabama-Huntsville configured their GOES satellited-based solar radiation product to include Puerto Rico, the US Virgin Islands (USVI), Dominican Republic, Haiti, Jamaica, and Cuba. The half-hourly and daily integrated data are available at 1 km resolution for Puerto Rico and the USVI and 2 km for Hispaniola, Jamaica, and Cuba. These data made it possible to implement estimates of satellite radiation-based evapotranspiration methods on all of the islands. The use of the solar radiation data in combination with estimates of other climate parameters facilitated the development of a water and energy balance algorithm for Puerto Rico. The purpose of this paper is to describe the theoretical background and technical approach for estimating the components of the daily water and energy balance. The operational water and energy balance model is the first of its kind in Puerto Rico. Model validation results are presented for reference and actual evapotranspiration, soil moisture, and streamflow. Mean errors for all analyses were less than 7%. The water and energy balance model results can benefit such diverse fields as agriculture, ecology, coastal water management, human health, renewable energy development, water resources, drought monitoring, and disaster and emergency management. This research represents a preliminary step in developing a suite of gridded hydro-climate products for the Caribbean Region. 
    more » « less
  5. Abstract Recent international agreements have strengthened and expanded commitments to protect and restore native habitats for biodiversity protection (“area‐based biodiversity conservation”). Nevertheless, biodiversity conservation is hindered because how such commitments should be implemented has been strongly debated, which can lead to suboptimal habitat protection decisions. We argue that, despite the debates, there are three essential principles for area‐based biodiversity conservation. These principles are related to habitat geographic coverage, amount, and connectivity. They emerge from evidence that, while large areas of nature are important and must be protected, conservation or restoration of multiple small habitat patches is also critical for global conservation, particularly in regions with high land use. We contend that the many area‐based conservation initiatives expected in the coming decades should follow the principles we identify, regardless of ongoing debates. Considering the importance of biodiversity for maintenance of ecosystem services, we suggest that this would bring widespread societal benefits. 
    more » « less