Abstract Solar photospheric abundances and CI-chondrite compositions are reviewed and updated to obtain representative solar system abundances of the elements and their isotopes. The new photospheric abundances obtained here lead to higher solar metallicity. Full 3D NLTE photospheric analyses are only available for 11 elements. A quality index for analyses is introduced. For several elements, uncertainties remain large. Protosolar mass fractions are H (X = 0.7060), He (Y = 0.2753), and for metals Li to U (Z = 0.0187). The protosolar (C+N)/H agrees within 13% with the ratio for the solar core from the Borexino experiment. Elemental abundances in CI-chondrites were screened by analytical methods, sample sizes, and evaluated using concentration frequency distributions. Aqueously mobile elements (e.g., alkalis, alkaline earths, etc.) often deviate from normal distributions indicating mobilization and/or sequestration into carbonates, phosphates, and sulfates. Revised CI-chondrite abundances of non-volatile elements are similar to earlier estimates. The moderately volatile elements F and Sb are higher than before, as are C, Br and I, whereas the CI-abundances of Hg and N are now significantly lower. The solar system nuclide distribution curves of s-process elements agree within 4% with s-process predictions of Galactic chemical evolution models. P-process nuclide distributions are assessed. No obvious correlation of CI-chondritic to solar elemental abundance ratios with condensation temperatures is observed, nor is there one for ratios of CI-chondrites/solar wind abundances.
more »
« less
Solar system abundances and condensation temperatures of the halogens fluorine, chlorine, bromine, and iodine
We review a large body of available meteoritic and stellar halogen data in the literature used for solar system abundances (i.e., representative abundances of the solar system at the time of its formation) and associated analytical problems. Claims of lower solar system chlorine, bromine and iodine abundances from recent analyses of CI-chondrites are untenable because of incompatibility of such low values with nuclear abundance systematics and independent measurements of halogens in the Sun and other stars. We suspect analytical problems associated with these peculiar rock types have led to lower analytical results in several studies. We review available analytical procedures and concentrations of halogens in chondrites. Our recommended values are close to pre-viously accepted values. Average concentrations by mass for CI-chondrites are F = 92 ± 20 ppm, Cl = 717 ± 110 ppm, Br = 3.77 ± 0.90 ppm, and I = 0.77 ± 0.31 ppm. The meteoritic abundances on the atomic scale normalized to N(Si) =106 are N(F) = 1270 ± 270, N(Cl) = 5290 ± 810, N(Br) = 12.3 ± 2.9, and N(I) = 1.59 ± 0.64. The meteoritic logarithmic abundances scaled to present-day photospheric abundances with log N(H) = 12 are A(F) = 4.61 ± 0.09, A(Cl) = 5.23 ± 0.06, A(Br) = 2.60 ± 0.09, and A(I) = 1.71 ± 0.15. These are our recommended present-day solar system abundances. These are compared to the present-day solar values derived from sunspots of N(F) = 776 ± 260, A(F) = 4.40 ± 0.25, and N(Cl) = 5500 ± 810, A(Cl) = 5.25 ± 0.12. The recommended solar system abundances based on meteorites are consistent with F and Cl abundance ratios measured independently in other stars and other astronomical environments. The recently determined chlorine abundance of 776 ± 21 ppm by Yokoyama et al. (2022) for the CI-chondrite-like asteroid Ryugu is consistent with the chlorine abundance evaluated for CI-chondrites here. Historically, the halogen abundances have been quite uncertain and unfortunately remain so. We still need reliable measurements from large, representative, and well-homogenized CI-chondrite samples. The analysis of F, Br, and I in Ryugu samples should also help to obtain more reliable halogen abundances. Updated equilibrium 50 % condensation temperatures from our previous work (Lodders, 2003; Fegley and Schaefer, 2010; Fegley and Lodders, 2018) are 713 K (F), 427 K (Cl), 392 K (Br) and 312 K (I) at a total pressure of 10^ 4 bar for a solar composition gas. We give condensation temperatures considering solid-solution as well as kinetic inhibition effects. Condensation temperatures computed with lower halogen abundances do not represent the correct condensation temperatures from a solar composition gas.
more »
« less
- Award ID(s):
- 1517541
- PAR ID:
- 10642788
- Publisher / Repository:
- Elservier
- Date Published:
- Journal Name:
- Geochemistry
- Volume:
- 83
- Issue:
- 1
- ISSN:
- 0009-2819
- Page Range / eLocation ID:
- 125957
- Subject(s) / Keyword(s):
- halogens fluorine chlorine bromine iodine chondrites abundances condensation temperatures meteorites
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Updated solar photospheric abundances are compared with meteoritic abundances. The uncertainties of solar abundances of many trace elements are considerably reduced compared to the 2003 compilation. Some of the solar rare earth elements have now assigned errors of ± 5%, approaching the accuracy of meteorite analyses. The agreement between solar abundances and CI chondrites is further improved. Problematic elements with comparatively large differences between solar and meteoritic abundances are manganese, hafnium, rubidium, gallium, and tungsten. The CI chondrites match solar abundances in refractory lithophile, siderophile, and volatile elements. All other chondrite groups differ from CI chondrites. With analytical uncertainties, there are no obvious fractionations between CI meteorites and solar abundances. Further progress will primarily come from improved solar abundance determinations. The limiting factor in the accuracy of meteorite abundances is the inherent heterogeneity of CI chondrites, primarily the Orgueil meteorite. The interstellar medium (ISM) from which the solar system formed has the same composition as the Sun for volatile and moderately volatile elements within a factor of 2. The more refractory elements of the ISM are depleted from the gas and are concentrated in grains.more » « less
-
Abstract Solar wind Fe and Mg fluences (atoms/cm2) were measured from Genesis collectors. Fe and Mg have similar first ionization potentials and solar wind Fe/Mg should equal the solar ratio. Solar wind Fe/Mg is a more valid measure of solar composition than CI chondrites and can be measured more accurately than spectroscopic photospheric abundances. Mg and Fe fluences analyzed in four laboratories give satisfactory agreement. Si and diamond‐like carbon collector fluences agree for both elements. The Mg and Fe fluences are 1.731 ± 0.073 × 1012and 1.366 ± 0.058 × 1012atoms/cm2. All plausible sources of errors down to the 1% level are documented. Our value for the solar system Fe/Mg, 0.789 ± 0.048 agrees within 1 sigma errors with CI chondrites, spectroscopic photospheric abundances, and with the solar wind data from the ACE spacecraft. CI samples from asteroid Ryugu give Fe/Mg in agreement with Genesis and meteoritic CI samples despite very small sample sizes. The higher accuracy of the Genesis solar Fe/Mg permits a comparison with chondritic Fe/Mg at the 10% level. Intermeteorite Fe/Mg averages differ among the main C chondrite groups but are within, or very close to, the ±1 sigma Genesis solar Fe/Mg.more » « less
-
Halogen (F, Cl, Br, and I) concentrations for 129 loess samples from worldwide localities yield geometric means of 517 ± 53 μg/g F, 150 ± 20 μg/g Cl, 1.58 ± 0.16 μg/g Br, 1.16 ± 0.11 μg/g I (2 standard errors). These concentrations, notably for Br and I, are substantially higher than previous estimates for the average upper continental crystalline bedrocks, with enrichment factors of 1.3 +0.7/−0.4 (F), 1.8 +2.4/−0.8 (Cl), 3.8 +1.3/−1.0 (Br), and 39 +71/−16 (I) (95%confidence), documenting enrichment of halogens on the continental surface. These surface halogens are likely sourced from the oceans and may be influenced by climate fluctuations. Halogen ratios (Br/Cl, I/Cl, and Br/I) in loess are similar to those of organic-rich soils/sediments from both terrigenous and marine settings, suggesting that terrigenous and marine organic matter have indistinguishable halogen ratios. The Br/I ratios differ from those in the fine grained matrix of glacial diamictites, indicating that another process (beyond biological influence) is responsible for fractionating halogens in the upper continental crust. Using a mixing model, we calculate that over 80–90 % of loess originates from crystalline bedrocks, while the remainder (<10–20 %) derives from the halogen- and organic-rich sedimentary cover or other sources (e.g., marine aerosols).more » « less
-
The halogens (F, Cl, Br, I) are cycled into the crust via subduction. The presence of F and Cl in arc settings impacts melt viscosity, igneous phase relations, and thermodynamic properties of magma in the pluton-to-volcano system, whereas the systematics of Br and I in melt systems are poorly understood. Mass balance constraints show that more halogens are subducted with the slab than are released during volcanism and passive degassing, suggesting that a halogen sink may exist in the lithosphere. Despite this, the halogen content of the upper continental crust of arc systems and distribution of halogens between plutonic and volcanic arc rocks are poorly quantified. This study presents whole rock halogen (F, Cl, Br, I) concentrations for 22 unaltered, geospatially- and temporally-related Cretaceous granitoid, hypabyssal plutonic, and volcanic rocks from the Sierra Nevada, California. This sampling approach allows direct comparison of plutonic and volcanic counterparts to make inferences about the pluton-volcano relationship. Because F behaves more incompatibly than Cl, Br, and I, late-stage fluid exsolution from melts may concentrate F in plutonic rocks and Cl, Br, and I in volcanic rocks. These whole rock halogen data provide a first-order approximation of the proportion of subducted halogens that are stored in the upper continental crust, and where along the magmatic plumbing path they are stored with important implications for their role in primary igneous processes such as pluton crystallization and volcanism. Ultimately, the results from this work will serve as the preliminary data for a larger study, provide insight into the magnitude of the roles the halogens play during primary igneous processes, and add to the limited halogen data on arc rocks.more » « less
An official website of the United States government

