This content will become publicly available on August 7, 2026
Title: Exact shape derivatives with unfitted finite element methods
Abstract We present an approach to shape optimization problems that uses an unfitted finite element method (FEM). The domain geometry is represented, and optimized, using a (discrete) level set function and we consider objective functionals that are defined over bulk domains. For a discrete objective functional, defined in the unfitted FEM framework, we show that theexactdiscrete shape derivative essentially matches the shape derivative at the continuous level. In other words, our approach has the benefits of both optimize-then-discretize and discretize-then-optimize approaches. Specifically, we establish the shape Fréchet differentiability of discrete (unfitted) bulk shape functionals using both the perturbation of the identity approach and direct perturbation of the level set representation. The latter approach is especially convenient for optimizing with respect to level set functions. Moreover, our Fréchet differentiability results hold foranypolynomial degree used for the discrete level set representation of the domain. We illustrate our results with some numerical accuracy tests, a simple model (geometric) problem with known exact solution, as well as shape optimization of structural designs. more »« less
Jankuhn, Thomas; Olshanskii, Maxim A.; Reusken, Arnold; Zhiliakov, Alexander
(, Journal of Numerical Mathematics)
null
(Ed.)
Abstract The paper studies a higher order unfitted finite element method for the Stokes system posed on a surface in ℝ 3 . The method employs parametric P k - P k −1 finite element pairs on tetrahedral bulk mesh to discretize the Stokes system on embedded surface. Stability and optimal order convergence results are proved. The proofs include a complete quantification of geometric errors stemming from approximate parametric representation of the surface. Numerical experiments include formal convergence studies and an example of the Kelvin--Helmholtz instability problem on the unit sphere.
Hang, Nguyen_T V; Sarabi, M Ebrahim
(, SIAM Journal on Optimization)
The presence of second-order smoothness for objective functions of optimization problems can provide valuable information about their stability properties and help us design efficient numerical algorithms for solving these problems. Such second-order information, however, cannot be expected in various constrained and composite optimization problems since we often have to express their objective functions in terms of extended-real-valued functions for which the classical second derivative may not exist. One powerful geometrical tool to use for dealing with such functions is the concept of twice epi-differentiability. In this paper, we study a stronger version of this concept, called strict twice epi-differentiability. We characterize this concept for certain composite functions and use it to establish the equivalence of metric regularity and strong metric regularity for a class of generalized equations at their nondegenerate solutions. Finally, we present a characterization of continuous differentiability of the proximal mapping of our composite functions.
Riedi, Rudolf H.; Balestriero, Randall; Baraniuk, Richard G.
(, Constructive Approximation)
Abstract We develop new theoretical results on matrix perturbation to shed light on the impact of architecture on the performance of a deep network. In particular, we explain analytically what deep learning practitioners have long observed empirically: the parameters of some deep architectures (e.g., residual networks, ResNets, and Dense networks, DenseNets) are easier to optimize than others (e.g., convolutional networks, ConvNets). Building on our earlier work connecting deep networks with continuous piecewise-affine splines, we develop an exact local linear representation of a deep network layer for a family of modern deep networks that includes ConvNets at one end of a spectrum and ResNets, DenseNets, and other networks with skip connections at the other. For regression and classification tasks that optimize the squared-error loss, we show that the optimization loss surface of a modern deep network is piecewise quadratic in the parameters, with local shape governed by the singular values of a matrix that is a function of the local linear representation. We develop new perturbation results for how the singular values of matrices of this sort behave as we add a fraction of the identity and multiply by certain diagonal matrices. A direct application of our perturbation results explains analytically why a network with skip connections (such as a ResNet or DenseNet) is easier to optimize than a ConvNet: thanks to its more stable singular values and smaller condition number, the local loss surface of such a network is less erratic, less eccentric, and features local minima that are more accommodating to gradient-based optimization. Our results also shed new light on the impact of different nonlinear activation functions on a deep network’s singular values, regardless of its architecture.
Tian, Jiawei; Gu, Xianfeng David; Chen, Shikui
(, Proceedings of the International Design Engineering Technical Conferences & Computers and Information in Engineering Conference)
null
(Ed.)
Ferromagnetic soft materials can generate flexible mobility and changeable configurations under an external magnetic field. They are used in a wide variety of applications, such as soft robots, compliant actuators, flexible electronics, and bionic medical devices. The magnetic field enables fast and biologically safe remote control of the ferromagnetic soft material. The shape changes of ferromagnetic soft elastomers are driven by the ferromagnetic particles embedded in the matrix of a soft elastomer. The external magnetic field induces a magnetic torque on the magnetized soft material, causing it to deform. To achieve the desired motion, the soft active structure can be designed by tailoring the layouts of the ferromagnetic soft elastomers. This paper aims to optimize multi-material ferromagnetic actuators. Multi-material ferromagnetic flexible actuators are optimized for the desired kinematic performance using the reconciled level set method. This type of magnetically driven actuator can carry out more complex shape transformations by introducing ferromagnetic soft materials with more than one magnetization direction. Whereas many soft active actuators exist in the form of thin shells, the newly proposed extended level set method (X-LSM) is employed to perform conformal topology optimization of ferromagnetic soft actuators on the manifolds. The objective function comprises two sub-objective functions, one for the kinematic requirement and the other for minimal compliance. Shape sensitivity analysis is derived using the material time derivative and the adjoint variable method. Three examples are provided to demonstrate the effectiveness of the proposed framework.
Zhang, F; Chen, Y
(, The 41st Conference on Uncertainty in Artificial Intelligence)
Optimizing objectives under constraints, where both the objectives and constraints are black box functions, is a common scenario in real-world applications such as the design of medical therapies, industrial process optimization, and hyperparameter optimization. One popular approach to handle these complex scenarios is Bayesian Optimization (BO). However, when it comes to the theoretical understanding of constrained Bayesian optimization (CBO), the existing framework often relies on heuristics, approximations, or relaxation of objectives and, therefore, lacks the same level of theoretical guarantees as in canonical BO. In this paper, we exclude the boundary candidates that could be compromised by noise perturbation and aim to find the interior optimum of the black-box-constrained objective. We rely on the insight that optimizing the objective and learning the constraints can both help identify the high-confidence regions of interest (ROI) that potentially contain the interior optimum. We propose an efficient CBO framework that intersects the ROIs identified from each aspect on a discretized search space to determine the general ROI. Then, on the ROI, we optimize the acquisition functions, balancing the learning of the constraints and the optimization of the objective. We showcase the efficiency and robustness of our proposed CBO framework through the high probability regret bounds for the algorithm and extensive empirical evidence.
Shahan, Jeremy T, and Walker, Shawn W. Exact shape derivatives with unfitted finite element methods. Retrieved from https://par.nsf.gov/biblio/10642924. Journal of Numerical Mathematics . Web. doi:10.1515/jnma-2024-0113.
Shahan, Jeremy T, & Walker, Shawn W. Exact shape derivatives with unfitted finite element methods. Journal of Numerical Mathematics, (). Retrieved from https://par.nsf.gov/biblio/10642924. https://doi.org/10.1515/jnma-2024-0113
@article{osti_10642924,
place = {Country unknown/Code not available},
title = {Exact shape derivatives with unfitted finite element methods},
url = {https://par.nsf.gov/biblio/10642924},
DOI = {10.1515/jnma-2024-0113},
abstractNote = {Abstract We present an approach to shape optimization problems that uses an unfitted finite element method (FEM). The domain geometry is represented, and optimized, using a (discrete) level set function and we consider objective functionals that are defined over bulk domains. For a discrete objective functional, defined in the unfitted FEM framework, we show that theexactdiscrete shape derivative essentially matches the shape derivative at the continuous level. In other words, our approach has the benefits of both optimize-then-discretize and discretize-then-optimize approaches. Specifically, we establish the shape Fréchet differentiability of discrete (unfitted) bulk shape functionals using both the perturbation of the identity approach and direct perturbation of the level set representation. The latter approach is especially convenient for optimizing with respect to level set functions. Moreover, our Fréchet differentiability results hold foranypolynomial degree used for the discrete level set representation of the domain. We illustrate our results with some numerical accuracy tests, a simple model (geometric) problem with known exact solution, as well as shape optimization of structural designs.},
journal = {Journal of Numerical Mathematics},
publisher = {Degruyter-Brill},
author = {Shahan, Jeremy T and Walker, Shawn W},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.