skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2111474

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present an approach to shape optimization problems that uses an unfitted finite element method (FEM). The domain geometry is represented, and optimized, using a (discrete) level set function and we consider objective functionals that are defined over bulk domains. For a discrete objective functional, defined in the unfitted FEM framework, we show that theexactdiscrete shape derivative essentially matches the shape derivative at the continuous level. In other words, our approach has the benefits of both optimize-then-discretize and discretize-then-optimize approaches. Specifically, we establish the shape Fréchet differentiability of discrete (unfitted) bulk shape functionals using both the perturbation of the identity approach and direct perturbation of the level set representation. The latter approach is especially convenient for optimizing with respect to level set functions. Moreover, our Fréchet differentiability results hold foranypolynomial degree used for the discrete level set representation of the domain. We illustrate our results with some numerical accuracy tests, a simple model (geometric) problem with known exact solution, as well as shape optimization of structural designs. 
    more » « less
    Free, publicly-accessible full text available August 7, 2026
  2. This paper discusses modeling and numerical issues in the simulation of the Landau--de Gennes (LdG) model of nematic liquid crystals (LCs) with cholesteric effects. We propose a fully-implicit, (weighted) $L^2$ gradient flow for computing energy minimizers of the LdG model, and note a time-step restriction for the flow to be energy decreasing. Furthermore, we give a mesh size restriction, for finite element discretizations, that is critical to avoid spurious numerical artifacts in discrete minimizers, particularly when simulating cholesteric LCs that exhibit ``twist.'' Furthermore, we perform a computational exploration of the model and present several numerical simulations in 3-D, on both slab geometries and spherical shells, with our finite element method. The simulations are consistent with experiments, illustrate the richness of the cholesteric model, and demonstrate the importance of the mesh size restriction. 
    more » « less
  3. We present a finite element technique for approximating the surface Hessian of a discrete scalar function on triangulated surfaces embedded in $$\R^{3}$$, with or without boundary. We then extend the method to compute approximations of the full shape operator of the underlying surface using only the known discrete surface. The method is based on the Hellan--Herrmann--Johnson (HHJ) element and does not require any ad-hoc modifications. Convergence is established provided the discrete surface satisfies a Lagrange interpolation property related to the exact surface. The convergence rate, in $L^2$, for the shape operator approximation is $O(h^m)$, where $$m \geq 1$$ is the polynomial degree of the surface, i.e. the method converges even for piecewise linear surface triangulations. For surfaces with boundary, some additional boundary data is needed to establish optimal convergence, e.g. boundary information about the surface normal vector or the curvature in the co-normal direction. Numerical examples are given on non-trivial surfaces that demonstrate our error estimates and the efficacy of the method. 
    more » « less
  4. We present an analysis and numerical study of an optimal control problem for the Landau-de Gennes (LdG) model of nematic liquid crystals (LCs), which is a crucial component in modern technology. They exhibit long range orientational order in their nematic phase, which is represented by a tensor-valued (spatial) order parameter $Q = Q(x)$. Equilibrium LC states correspond to $$Q$$ functions that (locally) minimize an LdG energy functional. Thus, we consider an $L^2$-gradient flow of the LdG energy that allows for finding local minimizers and leads to a semi-linear parabolic PDE, for which we develop an optimal control framework. We then derive several a priori estimates for the forward problem, including continuity in space-time, that allow us to prove existence of optimal boundary and external ``force'' controls and to derive optimality conditions through the use of an adjoint equation. Next, we present a simple finite element scheme for the LdG model and a straightforward optimization algorithm. We illustrate optimization of LC states through numerical experiments in two and three dimensions that seek to place LC defects (where $Q(x) = 0$) in desired locations, which is desirable in applications. 
    more » « less
  5. Abstract We establish several useful estimates for a non-conforming 2-norm posed on piecewise linear surface triangulations with boundary, with the main result being a Poincaré inequality.We also obtain equivalence of the non-conforming 2-norm posed on the true surface with the norm posed on a piecewise linear approximation.Moreover, we allow for free boundary conditions.The true surface is assumed to be C 2 , 1 C^{2,1} when free conditions are present; otherwise, C 2 C^{2} is sufficient.The framework uses tools from differential geometry and the closest point map (see [G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations , Lecture Notes in Math. 1357, Springer, Berlin (1988), 142–155]) for approximating the full surface Hessian operator.We also present a novel way of applying the closest point map when dealing with surfaces with boundary.Connections with surface finite element methods for fourth-order problems are also noted. 
    more » « less
  6. Abstract We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in $${\mathbb {R}}^{3}$$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $$C^{k+1}$$ surfaces, with degree $$k$$ (Lagrangian, parametrically curved) approximation of the surface, for any $$k \geqslant 1$$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $$C^{2,1}$$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt & R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method. 
    more » « less