skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 14, 2026

Title: Synergistic and visualized toughening of elastomers through mechanophore crosslinks and multiple networks
Integrating mechanophores into multiple-network elastomers enables 20-fold toughness enhancement and 37% activation and provides insights into the toughening mechanismviabond scission visualization.  more » « less
Award ID(s):
2204079
PAR ID:
10643277
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
13
Issue:
40
ISSN:
2050-7488
Page Range / eLocation ID:
34409 to 34416
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Parsek, Matthew (Ed.)
    ABSTRACT Chronic polymicrobial infections involvingPseudomonas aeruginosaandStaphylococcus aureusare prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated thatP. aeruginosais attracted toS. aureususing type IV pili (TFP)-mediated chemotaxis, but the impact of attraction onS. aureusgrowth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival ofS. aureusduring coculture, we found that interspecies chemotaxis providesP. aeruginosaa competitive advantage by promoting invasion into and disruption ofS. aureusmicrocolonies. This behavior rendersS. aureussusceptible toP. aeruginosaantimicrobials. Conversely, in the absence of TFP motility,P. aeruginosacells exhibit reduced invasion ofS. aureuscolonies. Instead,P. aeruginosabuilds a cellular barrier adjacent toS. aureusand secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into theS. aureuscolonies. Reduced invasion leads to the formation of denser and thickerS. aureuscolonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show thatP. aeruginosamotility modifications of spatial structure enhance competition againstS. aureus. Overall, these studies expand our understanding of howP. aeruginosaTFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCEThe polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation ofPseudomonas aeruginosaandStaphylococcus aureusfrom airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils thatP. aeruginosais attracted toS. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition ofP. aeruginosamotility and thus invasion,S. aureuscolony architecture changes dramatically, wherebyS. aureusis protected fromP. aeruginosaantagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition. 
    more » « less
  2. Acer(Sapindaceae) is a major genus of broadleaf trees dominating deciduous forests in the Northern Hemisphere, with Asia exhibiting the highest species diversity. Many economically importantAcerspecies are cultivated for ornamental or timber purposes.Acerpowdery mildew, caused by fungi in the tribeCystotheceae, poses significant global economic and ecological threats. The pathogenicity spectrum remains unclear due to taxonomic uncertainties in its primary causal genera,SawadaeaandTakamatsuella. This study presents a comprehensive phylogenetic-taxonomic analysis of the two genera across East Asia, Europe, and North America. Using 75 ITS and 58 28S rDNA newly obtained sequences, we resolved 12Sawadaeaspecies and oneTakamatsuellaspecies into nine monophyletic clades, revealing marked cryptic diversity (three new species:S. acerina,S. aceris-arguti,S. taii) and two paraphyletic groups (S. bifida/S. negundinis). Taxonomic revisions include:S. bicornissplit into twoformae(f. bicornisandf. polyphaga f. nov.) with distinct host preferences;S. tulasnei(sensu stricto) restricted to Europe/North America, invalidating previous Asian records;S. nankinensisandS. koelreuteriaeform two basal lineages. Phylogenetic positioning confirmedTakamatsuellaas a distinct genus sister toSawadaea, supported by an ITS1 26 bp deletion. Host specificity analysis revealed narrow host ranges (primarilyAcer) with two evolutionary host expansions toKoelreuteria,Aesculus, andLiquidambar. This study also newly describes the asexual morphs of four species (S. aesculi,S. bifida,S. bomiensisandS. kovaliana) and establishes a molecular framework for disease management through clarified phylogeny and taxonomy. Our findings provide critical insights into fungal evolution, host-pathogen interactions, and strategies for mitigating powdery mildew impacts in forest ecosystems. 
    more » « less
  3. Abstract Escovopsisis a diverse group of fungi, which are considered specialized parasites of the fungal cultivars of fungus-growing ants. The lack of a suitable taxonomic framework and phylogenetic inconsistencies have long hamperedEscovopsisresearch. The aim of this study is to reassess the genusEscovopsisusing a taxonomic approach and a comprehensive multilocus phylogenetic analysis, in order to set the basis of the genus systematics and the stage for futureEscovopsisresearch. Our results support the separation ofEscovopsisinto three distinct genera. In light of this, we redefineEscovopsisas a monophyletic clade whose main feature is to form terminal vesicles on conidiophores. Consequently,E. kreiseliiandE. trichodermoideswere recombined into two new genera,SympodioroseaandLuteomyces, asS.kreiseliiandL.trichodermoides, respectively. This study expands our understanding of the systematics ofEscovopsisand related genera, thereby facilitating future research on the evolutionary history, taxonomic diversity, and ecological roles of these inhabitants of the attine ant colonies. 
    more » « less
  4. Abstract Detecting pathogens in the live animal trade is critical for tracking and preventing their movement, introduction and spillover into susceptible fauna. However, the scale of the live animal trade makes individually testing animals infeasible for all but the most economically important taxa. For instance, while the fungal pathogen,Batrachochytrium salamandrivorans(Bsal), threatens amphibian, particularly caudate diversity, in Europe and the Americas, screening even a fraction of the millions of live amphibians imported into the United States, alone, is impractically laborious and expensive. A promising alternative to individual‐level sampling (e.g. swabbing the skin of salamanders) is to instead collect DNA from the animals' environment (e.g. housing container or water) which allows us to screen a whole group of animals at a time.We used a series of experiments withBsal‐spiked water and substrates and experimentally infected rough‐skinned newts (Taricha granulosa) to determine which methods yield the mostBsalenvironmental DNA (eDNA) and evaluate the capacity of these methods to detectBsal‐infected animals in conditions found in captive settings and trade.We found that filtering water housing infected animals for even an hour can consistently recover detectable levels ofBsaleDNA, that there is little evidence ofBsaleDNA being clumped in housing containers or swamped or inhibited by dirty housing containers, and that eDNA‐based methods achieves an equivalent or higher chance of detectingBsalinfections in a (virtual) population of co‐housed newts with fewer samples than individual swabs.By sampling the genetic materials accumulated from a whole group of animals, eDNA‐based methods are a powerful means of detecting pathogens, such asBsal, in shipments and captive populations. These methods bring routine pathogen surveillance into reach in many more contexts and can thus be an important tool in conservation and disease control. 
    more » « less
  5. Summary Water scarcity, resulting from climate change, poses a significant threat to ecosystems.Syntrichia ruralis, a dryland desiccation‐tolerant moss, provides valuable insights into survival of water‐limited conditions.We sequenced the genome ofS. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relativeS. caninervis. We took a genetic approach to characterize the role of anS. ruralistranscription factor, identified in transcriptomic analyses, inArabidopsis thaliana.The genome was assembled into 12 chromosomes encompassing 21 169 protein‐coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation‐associated gene families, and highlighted genome‐level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)‐responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of theS. ruralisortholog of ABA‐insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized inArabidopsis, acts as a negative regulator of an ABA‐dependent stress response inArabidopsis.The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation. 
    more » « less