skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 5, 2026

Title: The Effects of Active Galactic Nuclei Feedback on the Lyα Forest Flux Power Spectrum
Abstract We study the effects of active galactic nuclei (AGN) feedback on the Lyαforest 1D flux power spectrum (P1D). Using theSimbacosmological-hydrodynamic simulations, we examine the impact that adding different AGN feedback modes has on the predicted P1D. We find that, forSimba, the impact of AGN feedback is most dramatic at lower redshifts (z < 1) and that AGN jet feedback plays the most significant role in altering the P1D. The effects of AGN feedback can be seen across a large range of wavenumbers (1.5 × 10−3 < k < 10−1s km−1) changing the ionization state of hydrogen in the IGM through heating. AGN feedback can also alter the thermal evolution of the IGM and thermally broaden individual Lyαabsorbers. For theSimbamodel, these effects become observable atz ≲ 1.0. At higher redshifts (z > 2.0), AGN feedback has a 2% effect on the P1D fork < 5 × 10−2s km−1and an 8% effect fork > 5 × 10−2s km−1. We show that the small-scale effect is reduced when normalizing the simulation to the observed mean flux. On large scales, the effect of AGN feedback appears via a change in the IGM temperature and is thus unlikely to bias cosmological parameters. The strong AGN jets in theSimbasimulation can reproduce thez > 2 Lyαforest. We stress that analyses comparing different AGN feedback models to future higher precision data will be necessary to determine the full extent of this effect.  more » « less
Award ID(s):
2006176
PAR ID:
10643624
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
980
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
72
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Active galactic nuclei (AGNs) feedback models are generally calibrated to reproduce galaxy observables such as the stellar mass function and the bimodality in galaxy colors. We use variations of the AGN feedback implementations in the IllustrisTNG (TNG) andSimbacosmological hydrodynamic simulations to show that the low-redshift Lyαforest can provide constraints on the impact of AGN feedback. We show that TNG overpredicts the number density of absorbers at column densitiesNHI< 1014cm−2compared to data from the Cosmic Origins Spectrograph (in agreement with previous work), and we demonstrate explicitly that its kinetic feedback mode, which is primarily responsible for galaxy quenching, has a negligible impact on the column density distribution (CDD) of absorbers. In contrast, we show that the fiducialSimbamodel, which includes AGN jet feedback, is the preferred fit to the observed CDD of thez= 0.1 Lyαforest across 5 orders of magnitude in column density. We show that theSimbaresults with jets produce a quantitatively better fit to the observational data than theSimbaresults without jets, even when the ultraviolet background is left as a free parameter. AGN jets inSimbaare high speed, collimated, weakly interacting with the interstellar medium (via brief hydrodynamic decoupling), and heated to the halo virial temperature. Collectively these properties result in stronger long-range impacts on the intergalactic medium when compared to TNG’s kinetic feedback mode, which drives isotropic winds with lower velocities at the galactic radius. Our results suggest that the low-redshift Lyαforest provides plausible evidence for long-range AGN jet feedback. 
    more » « less
  2. Abstract We explore the role of galactic feedback on the low-redshift Lyα(Lyα) forest (z≲ 2) statistics and its potential to alter the thermal state of the intergalactic medium. Using the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) suite, we explore variations of the AGN and stellar feedback models in the IllustrisTNG and Simba subgrid models. We find that both AGN and stellar feedback in Simba play a role in setting the Lyαforest column density distribution function (CDD) and the Doppler width (b-value) distribution. The Simba AGN jet feedback mode is able to efficiently transport energy out to the diffuse IGM, causing changes in the shape and normalization of the CDD and a broadening of theb-value distribution. We find that stellar feedback plays a prominent role in regulating supermassive black hole growth and feedback, highlighting the importance of constraining stellar and AGN feedback simultaneously. In IllustrisTNG, the AGN feedback variations explored in CAMELS do not affect the Lyαforest, but varying the stellar feedback model does produce subtle changes. Our results imply that the low-zLyαforest can be sensitive to changes in the ultraviolet background, stellar and black hole feedback, and that AGN jet feedback in particular can have a strong effect on the thermal state of the IGM. 
    more » « less
  3. Abstract The density and temperature properties of the intergalactic medium (IGM) reflect the heating and ionization history during cosmological structure formation, and are primarily probed by the Ly α forest of neutral hydrogen absorption features in the observed spectra of background sources. We present the methodology and initial results from the Cholla IGM Photoheating Simulation (CHIPS) suite performed with the graphics process unit–accelerated Cholla code to study the IGM at high, uniform spatial resolution maintained over large volumes. In this first paper, we examine the IGM structure in CHIPS cosmological simulations that include IGM uniform photoheating and photoionization models where hydrogen reionization is completed early or by redshift z ∼ 6. Comparing with observations of the large- and small-scale Ly α transmitted flux power spectra P ( k ) at redshifts 2 ≲ z ≲ 5.5, the relative agreement of the models depends on scale, with the self-consistent Puchwein et al. IGM photoheating and photoionization model in good agreement with the flux P ( k ) at k ≳ 0.01 s km −1 at redshifts 2 ≲ z ≲ 3.5. On larger scales, the P ( k ) measurements increase in amplitude from z ∼ 4.6 to z ∼ 2.2, faster than the models, and lie in between the model predictions at 2.2 ≲ z ≲ 4.6 for k ≈ 0.002–0.01 s km −1 . We argue that the models could improve by changing the He ii photoheating rate associated with active galactic nuclei to reduce the IGM temperature at z ∼ 3. At higher redshifts, z ≳ 4.5, the observed flux P ( k ) amplitude increases at a rate intermediate between the models, and we argue that for models where hydrogen reionization is completed late ( z ∼ 5.5–6), resolving this disagreement will require inhomogeneous or “patchy” reionization. We then use an additional set of simulations to demonstrate that our results have numerically converged and are not strongly affected by varying cosmological parameters. 
    more » « less
  4. Abstract JWST observations have recently begun delivering the first samples of Lyαvelocity profile measurements atz> 6, opening a new window into the reionization process. Interpretation ofz≳ 6 line profiles is currently stunted by limitations in our knowledge of the intrinsic Lyαprofile (before encountering the intergalactic medium (IGM)) of the galaxies that are common atz≳ 6. To overcome this shortcoming, we have obtained resolved (R∼ 3900) Lyαspectroscopy of 42 galaxies atz= 2.1–3.4 with similar properties as are seen atz> 6. We quantify a variety of Lyαprofile statistics as a function of [Oiii]+Hβequivalent width (EW). Our spectra reveal a new population ofz≃ 2–3 galaxies with large [Oiii]+HβEWs (>1200 Å) and a large fraction of Lyαflux emerging near the systemic redshift (peak velocity ≃0 km s−1). These spectra indicate that low-density neutral hydrogen channels are able to form in a subset of low-mass galaxies (≲1 × 108M) that experience a burst of star formation (sSFR > 100 Gyr−1). Other extreme [Oiii] emitters show weaker Lyαthat is shifted to higher velocities (≃240 km s−1) with little emission near the line center. We investigate the impact the IGM is likely to have on these intrinsic line profiles in the reionization era, finding that the centrally peaked Lyαemitters should be strongly attenuated atz≳ 5. We show that these line profiles are particularly sensitive to the impact of resonant scattering from infalling IGM and can be strongly attenuated even when the IGM is highly ionized atz≃ 5. We compare these expectations against a new database ofz≳ 6.5 galaxies with robust velocity profiles measured with JWST/NIRSpec. 
    more » « less
  5. ABSTRACT The thermal history and structure of the intergalactic medium (IGM) at $$z \ge 4$$ is an important boundary condition for reionization, and a key input for studies using the Ly $$\alpha$$ forest to constrain the masses of alternative dark matter candidates. Most such inferences rely on simulations that lack the spatial resolution to fully resolve the hydrodynamic response of IGM filaments and minihaloes to H i reionization heating. In this letter, we use high-resolution hydrodynamic + radiative transfer simulations to study how these affect the IGM thermal structure. We find that the adiabatic heating and cooling driven by the expansion of initially cold gas filaments and minihaloes sources significant small-scale temperature fluctuations. These likely persist in much of the IGM until $$z \le 4$$. Capturing this effect requires resolving the clumping scale of cold, pre-ionized gas, demanding spatial resolutions of $${\le} 2$$ $$h^{-1}$$kpc. Pre-heating of the IGM by X-rays can slightly reduce the effect. Our preliminary estimate of the effect on the Ly $$\alpha$$ forest finds that, at $$\log (k /[{\rm km^{-1} s}]) = -1.0$$, the Ly $$\alpha$$ forest flux power (at fixed mean flux) can increase $${\approx} 10~{{\ \rm per\ cent}}$$ going from 8 and 2 $$h^{-1}$$kpc resolution at $$z = 4{\!-\!}5$$ for gas ionized at $$z \ \lt\ 7$$. These findings motivate more careful analyses of how the effects studied here affect the Ly $$\alpha$$ forest. 
    more » « less