skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Sea level rise submergence simulations suggest substantial deterioration of Indian River Lagoon ecosystem services likely by 2050, Florida, USA
The Indian River Lagoon is a 250-km-long Estuary of National Significance located along the east-central Florida coast of the USA. NOAA tidal data generated at a station located in the central reaches of the estuary indicate sea level rise has accelerated over the duration of record to an average of 9.6 ± 1.6 mm year−1 (2003–2022). It is expected to continue accelerating over the duration of this century. This investigation simulated submergence of the estuary using the on-line geospatial tool Future Shorelines to evaluate the effects of sea level rise on a suite of natural and built attributes that either contribute to (i.e., boat ramps, spoil islands, seagrass) or degrade (septic and wastewater treatment systems) ecosystem services. The simulations are based upon the median NOAA high sea level rise trajectory in target years 2050, 2070, and 2100. By 2050, 23% of the public motorized boat ramps and 87% of the spoil islands that provide recreation and conservation services will be largely to completely inundated. Seven percent of the known or likely septic systems in the watershed will be submerged by 2050. Sea level rise does not compromise any of the eleven wastewater treatment plants considered in this study over the next 25 years. Seagrass distribution is expected to decline 34% by 2050 due to a reduction in substate area above the light-dependent median depth limit. By 2100, all ramps, spoil islands, over 27,000 (22%) septic systems, and six wastewater treatment plants will be inundated. By then, the average water depth will exceed the median depth limit for seagrass throughout most of the estuary. Ecosystem service mitigation strategies are presented for the attributes considered. The development of the submergence simulation tool and discussion of mitigation options benefited by collaboration with project partners responsible for resource management in the study domain. This coproduction ensured the simulation outputs and mitigation options were realistic and actionable. The risks to estuarine ecosystem services induced by urbanization and sea level rise are reported worldwide and the methodological approach of this study offers a novel means of developing or enhancing mitigation strategies.  more » « less
Award ID(s):
2424122 2025954 1832229
PAR ID:
10643709
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Regional Environmental Change
Volume:
25
Issue:
2
ISSN:
1436-3798
Subject(s) / Keyword(s):
Ecosystem services Florida Indian River Lagoon Sea level rise Submergence modeling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sea level rise is leading to the rapid migration of marshes into coastal forests and other terrestrial ecosystems. Although complex biophysical interactions likely govern these ecosystem transitions, projections of sea level driven land conversion commonly rely on a simplified “threshold elevation” that represents the elevation of the marsh‐upland boundary based on tidal datums alone. To determine the influence of biophysical drivers on threshold elevations, and their implication for land conversion, we examined almost 100,000 high‐resolution marsh‐forest boundary elevation points, determined independently from tidal datums, alongside hydrologic, ecologic, and geomorphic data in the Chesapeake Bay, the largest estuary in the U.S. located along the mid‐Atlantic coast. We find five‐fold variations in threshold elevation across the entire estuary, driven not only by tidal range, but also salinity and slope. However, more than half of the variability is unexplained by these variables, which we attribute largely to uncaptured local factors including groundwater discharge, microtopography, and anthropogenic impacts. In the Chesapeake Bay, observed threshold elevations deviate from predicted elevations used to determine sea level driven land conversion by as much as the amount of projected regional sea level rise by 2050. These results suggest that local drivers strongly mediate coastal ecosystem transitions, and that predictions based on elevation and tidal datums alone may misrepresent future land conversion. 
    more » « less
  2. Future sea-level rise poses an existential threat for many river deltas, yet quantifying the effect of sea-level changes on these coastal landforms remains a challenge. Sea-level changes have been slow compared to other coastal processes during the instrumental record, such that our knowledge comes primarily from models, experiments, and the geologic record. Here we review the current state of science on river delta response to sea-level change, including models and observations from the Holocene until 2300 CE. We report on improvements in the detection and modeling of past and future regional sea-level change, including a better understanding of the underlying processes and sources of uncertainty. We also see significant improvements in morphodynamic delta models. Still, substantial uncertainties remain, notably on present and future subsidence rates in and near deltas. Observations of delta submergence and land loss due to modern sea-level rise also remain elusive, posing major challenges to model validation. ▪ There are large differences in the initiation time and subsequent delta progradation during the Holocene, likely from different sea-level and sediment supply histories. ▪ Modern deltas are larger and will face faster sea-level rise than during their Holocene growth, making them susceptible to forced transgression. ▪ Regional sea-level projections have been much improved in the past decade and now also isolate dominant sources of uncertainty, such as the Antarctic ice sheet. ▪ Vertical land motion in deltas can be the dominant source of relative sea-level change and the dominant source of uncertainty; limited observations complicate projections. ▪ River deltas globally might lose 5% (∼35,000 km 2 ) of their surface area by 2100 and 50% by 2300 due to relative sea-level rise under a high-emission scenario. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  3. Abstract Groundwater discharge is an important mechanism through which fresh water and associated solutes are delivered to the ocean. Permafrost environments have traditionally been considered hydrogeologically inactive, yet with accelerated climate change and permafrost thaw, groundwater flow paths are activating and opening subsurface connections to the coastal zone. While warming has the potential to increase land-sea connectivity, sea-level change has the potential to alter land-sea hydraulic gradients and enhance coastal permafrost thaw, resulting in a complex interplay that will govern future groundwater discharge dynamics along Arctic coastlines. Here, we use a recently developed permafrost hydrological model that simulates variable-density groundwater flow and salinity-dependent freeze-thaw to investigate the impacts of sea-level change and land and ocean warming on the magnitude, spatial distribution, and salinity of coastal groundwater discharge. Results project both an increase and decrease in discharge with climate change depending on the rate of warming and sea-level change. Under high warming and low sea-level rise scenarios, results show up to a 58% increase in coastal groundwater discharge by 2100 due to the formation of a supra-permafrost aquifer that enhances freshwater delivery to the coastal zone. With higher rates of sea-level rise, the increase in discharge due to warming is reduced to 21% as sea-level rise decreased land-sea hydraulic gradients. Under lower warming scenarios for which supra-permafrost groundwater flow was not established, discharge decreased by up to 26% between 1980 and 2100 for high sea-level rise scenarios and increased only 8% under low sea-level rise scenarios. Thus, regions with higher warming rates and lower rates of sea-level change (e.g. northern Nunavut, Canada) will experience a greater increase in discharge than regions with lower warming rates and higher rates of sea-level change. The magnitude, location and salinity of discharge have important implications for ecosystem function, water quality, and carbon dynamics in coastal zones. 
    more » « less
  4. Tourism offers many economic benefits but can have long-lasting ecological effects when improperly managed. Tourism can cause overwhelming pressure on wastewater treatment systems, as in Belize, where some of the over 400 small islands (cayes) that were once temporary sites for fishermen have become popular tourist destinations. An overabundance of nitrogen, in part as a result of incomplete wastewater treatment, threatens human health and ecosystem services. The tourism industry is a complex and dynamic industry with many sectors and stakeholders with conflicting goals. In this study, a systems thinking approach was adopted to study the dynamic interactions between stakeholders and the environment at Laughing Bird Caye National Park in Belize. The project centered on nutrient discharges from the caye’s onsite wastewater treatment system. An archetype analysis approach was applied to frame potential solutions to nutrient pollution and understand potential behaviors over time. “Out of control” and “Underachievement” were identified as system archetypes; “Shifting the Burden” and ‘‘Limits to Success’’ were used to model specific cases. Based on these results, upgrading of the wastewater treatment system should be performed concurrently with investments in the user experience of the toilets, education on the vulnerability of the treatment system and ecosystem, and controls on the number of daily tourists. 
    more » « less
  5. The rate at which sea level is rising in recent years due to global warming has become a growing concern, most especially as it affects coastal areas of the world. The devastating impact of sea level rise (SLR) on coastal communities, ranging from coastal beach erosion, nuisance high tide flooding, and saltwater pollution of low-lying farmlands to loss of tidal wetlands is leading to a decline in social and economic activities especially in coastal areas. According to the National Oceanic and Atmospheric Administration (NOAA), 40% of the US population living on the coast is inevitably vulnerable to SLR. Therefore, the objective of this study is to project relative sea level rise (RSLR) for Anne Arundel County and to estimate the contribution of land subsidence to RSLR at this location. To project RSLR for Anne Arundel County, this study combines global mean sea level rise (GMSLR) scenarios with local land subsidence measured at GPS LOYF station in Annapolis, Anne Arundel County, Maryland. Current quadratic trend of RSLR in Anne Arundel County projects that by 2100, RSLR for the county will be approximately 1.2 m forecasting from 1992, which is 86% and 174% of the GMSLR intermediate-high and intermediate-low scenarios, respectively. Land subsidence significantly contributed to RSLR in the 20th century; however, since 2001 absolute sea level rise (ASLR) driven by climate change has significantly contributed to RSLR in this location. The results in this paper suggest considering the intermediate-high RSLR scenario for planning and decision-making in Anne Arundel County, Maryland, in relation to SLR. 
    more » « less