The key role of the Southern Annular Mode during the sea-ice maximum for Antarctic sea ice and its recent loss
More Like this
-
-
Abstract The Arctic Ocean’s Wandel Sea is the easternmost sector of the Last Ice Area, where thick, old sea ice is expected to endure longer than elsewhere. Nevertheless, in August 2020 the area experienced record-low sea ice concentration. Here we use satellite data and sea ice model experiments to determine what caused this record sea ice minimum. In our simulations there was a multi-year sea-ice thinning trend due to climate change. Natural climate variability expressed as wind-forced ice advection and subsequent melt added to this trend. In spring 2020, the Wandel Sea had a mixture of both thin and—unusual for recent years—thick ice, but this thick ice was not sufficiently widespread to prevent the summer sea ice concentration minimum. With continued thinning, more frequent low summer sea ice events are expected. We suggest that the Last Ice Area, an important refuge for ice-dependent species, is less resilient to warming than previously thought.more » « less
-
Our understanding of Arctic sea ice and its wide-ranging influence is deeply rooted in observation. Advancing technologies have profoundly improved our ability to observe Arctic sea ice, document its processes and properties, and describe atmosphere-ice-ocean interactions with unprecedented detail. Yet, our progress toward better understanding the Arctic sea ice system is mired by the stark disparities between observations that tend to be siloed by method, scientific discipline, and application. This article presents a review and philosophical design for observing sea ice and accelerating our understanding of the Arctic sea ice system. We give a brief history of Arctic sea ice observations and showcase the 2018 melt season within the context of five observational themes: spatial heterogeneity, temporal variability, cross-disciplinary science, scalability, and retrieval uncertainty. We synthesize buoy data, optical imagery, satellite retrievals, and airborne measurements to demonstrate how disparate data sets can be woven together to transcend issues of observational scale. The results show that there are limitations to interpreting any single data set alone. However, many of these limitations can be surmounted by combining observations that cross spatial and temporal scales. We conclude the article with pathways toward enhanced coordination across observational platforms in order to: (1) optimize the scientific, operational, and community return on observational investments, and (2) facilitate a richer understanding of Arctic sea ice and its role in the climate system.more » « less
-
This is the repository for an R Shiny App that allows users to create sea ice records for the Bering and Chukchi seas from diatom data. Users will upload a data set of diatom percentages and the app will return predictions of spring (March, April, May, June_ sea ice concentrations based on a generalized additive model of surface sediment assemblages in the Bering and Chukchi Seas. Please direct questions to Beth Caissie bcaissie@usgs.gov.more » « less
An official website of the United States government
