skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Ginzburg-Landau description of a class of non-unitary minimal models
A<sc>bstract</sc> It has been proposed that the Ginzburg-Landau description of the non-unitary conformal minimal modelM(3, 8) is provided by the Euclidean theory of two real scalar fields with third-order interactions that have imaginary coefficients. The same lagrangian describes the non-unitary modelM(3, 10), which is a product of two Yang-Lee theoriesM(2, 5), and the Renormalization Group flow from it toM(3, 8). This proposal has recently passed an important consistency check, due to Y. Nakayama and T. Tanaka, based on the anomaly matching for non-invertible topological lines. In this paper, we elaborate the earlier proposal and argue that the two-field theory describes theDseries modular invariants of bothM(3, 8) andM(3, 10). We further propose the Ginzburg-Landau descriptions of the entire class ofDseries minimal modelsM(q, 3q– 1) andM(q, 3q+ 1), with odd integerq. They involve$$ \mathcal{PT} $$ PT symmetric theories of two scalar fields with interactions of orderqmultiplied by imaginary coupling constants.  more » « less
Award ID(s):
2209997
PAR ID:
10643882
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2025
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We study moduli stabilization via fluxes in the 26Landau-Ginzburg model. Fluxes not only give masses to scalar fields but can also induce higher order couplings that stabilize massless fields. We investigate this for several different flux choices in the 26model and find two examples that are inconsistent with the Refined Tadpole Conjecture. We also present, to our knowledge, the first 4d$$ \mathcal{N} $$ N = 1 Minkowski solution in string theory without any flat direction. 
    more » « less
  2. A<sc>bstract</sc> In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions. We specialize to certain gaugeable cases, specifically, fusion categories of the form$$ \textrm{Rep}\left(\mathcal{H}\right) $$ Rep H for$$ \mathcal{H} $$ H a suitable Hopf algebra (which includes the special case Rep(G) forGa finite group). We also specialize to the case that the fusion category is multiplicity-free. We discuss how to construct a modular-invariant partition function from a choice of Frobenius algebra structure on$$ {\mathcal{H}}^{\ast } $$ H . We discuss how ordinaryGorbifolds for finite groupsGare a special case of the construction, corresponding to the fusion category Vec(G) = Rep(ℂ[G]*). For the cases Rep(S3), Rep(D4), and Rep(Q8), we construct the crossing kernels for general intertwiner maps. We explicitly compute partition functions in the examples of Rep(S3), Rep(D4), Rep(Q8), and$$ \textrm{Rep}\left({\mathcal{H}}_8\right) $$ Rep H 8 , and discuss applications inc= 1 CFTs. We also discuss decomposition in the special case that the entire noninvertible symmetry group acts trivially. 
    more » « less
  3. It is well-known that under suitable hypotheses, for a sequence of solutions of the (simplified) Ginzburg–Landau equations-\Delta u_{\varepsilon} +\varepsilon^{-2}(|u_{\varepsilon}|^{2}-1)u_{\varepsilon} = 0, the energy and vorticity concentrate as\varepsilon\to 0around a codimension2stationary varifold – a (measure-theoretic) minimal surface. Much less is known about the question of whether, given a codimension2minimal surface, there exists a sequence of solutions for which the given minimal surface is the limiting concentration set. The corresponding question is very well-understood for minimal hypersurfaces and the scalar Allen–Cahn equation, and for the Ginzburg–Landau equations when the minimal surface is locally area-minimizing, but otherwise quite open. We consider this question on a3-dimensional closed Riemannian manifold(M,g), and we prove that any embedded nondegenerate closed geodesic can be realized as the asymptotic energy/ vorticity concentration set of a sequence of solutions of the Ginzburg–Landau equations. 
    more » « less
  4. Abstract Given an NQC log canonical generalized pair$$(X,B+M)$$ ( X , B + M ) whose underlying varietyXis not necessarily$$\mathbb {Q}$$ Q -factorial, we show that one may run a$$(K_X+B+M)$$ ( K X + B + M ) -MMP with scaling of an ample divisor which terminates, provided that$$(X,B+M)$$ ( X , B + M ) has a minimal model in a weaker sense or that$$K_X+B+M$$ K X + B + M is not pseudo-effective. We also prove the existence of minimal models of pseudo-effective NQC log canonical generalized pairs under various additional assumptions, for instance when the boundary contains an ample divisor. 
    more » « less
  5. A<sc>bstract</sc> In this paper we explorepp→W±(ℓ±ν)γto$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ O 1 / Λ 4 in the SMEFT expansion. Calculations to this order are necessary to properly capture SMEFT contributions that grow with energy, as the interference between energy-enhanced SMEFT effects at$$ \mathcal{O}\left(1/{\Lambda}^2\right) $$ O 1 / Λ 2 and the Standard Model is suppressed. We find that there are several dimension eight operators that interfere with the Standard Model and lead to the same energy growth, ~$$ \mathcal{O}\left({E}^4/{\Lambda}^4\right) $$ O E 4 / Λ 4 , as dimension six squared. While energy-enhanced SMEFT contributions are a main focus, our calculation includes the complete set of$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ O 1 / Λ 4 SMEFT effects consistent with U(3)5flavor symmetry. Additionally, we include the decay of theW±→ ℓ±ν, making the calculation actually$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ q ¯ q ± νγ . As such, we are able to study the impact of non-resonant SMEFT operators, such as$$ \left({L}^{\dagger }{\overline{\sigma}}^{\mu }{\tau}^IL\right)\left({Q}^{\dagger }{\overline{\sigma}}^{\nu }{\tau}^IQ\right) $$ L σ ¯ μ τ I L Q σ ¯ ν τ I Q Bμν, which contribute to$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ q ¯ q ± νγ directly and not to$$ \overline{q}{q}^{\prime}\to {W}^{\pm}\gamma $$ q ¯ q W ± γ . We show several distributions to illustrate the shape differences of the different contributions. 
    more » « less