Abstract Purpose This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settings. Methods The proposed approach integrates 3D contextual information via guided sequential episodic training in which a query CT slice is segmented by exploiting its previous labeled CT slice (i.e., support). Segmentation starts by detecting the rectum using a Markov Random Field-based algorithm. Then, supervised sequential episodic training is applied to the remaining slices, while contrastive learning is employed to enhance feature discriminability, thereby improving segmentation accuracy. Results The proposed method, evaluated on 98 abdominal scans of prepped patients, achieved a Dice coefficient of 97.3% and a polyp information preservation accuracy of 98.28%. Statistical analysis, including 95% confidence intervals, underscores the method’s robustness and reliability. Clinically, this high level of accuracy is vital for ensuring the preservation of critical polyp details, which are essential for accurate automatic diagnostic evaluation. The proposed method performs reliably in scenarios with limited annotated data. This is demonstrated by achieving a Dice coefficient of 97.15% when the model was trained on a smaller number of annotated CT scans (e.g., 10 scans) than the testing dataset (e.g., 88 scans). Conclusions The proposed sequential segmentation approach achieves promising results in colon segmentation. A key strength of the method is its ability to generalize effectively, even with limited annotated datasets—a common challenge in medical imaging. 
                        more » 
                        « less   
                    
                            
                            Application of Deep Learning to IVC Filter Detection from CT Scans
                        
                    
    
            IVC filters (IVCF) perform an important function in select patients that have venous blood clots. However, they are usually intended to be temporary, and significant delay in removal can have negative health consequences for the patient. Currently, all Interventional Radiology (IR) practices are tasked with tracking patients in whom IVCF are placed. Due to their small size and location deep within the abdomen it is common for patients to forget that they have an IVCF. Therefore, there is a significant delay for a new healthcare provider to become aware of the presence of a filter. Patients may have an abdominopelvic CT scan for many reasons and, fortunately, IVCF are clearly visible on these scans. In this research a deep learning model capable of segmenting IVCF from CT scan slices along the axial plane is developed. The model achieved a Dice score of 0.82 for training over 372 CT scan slices. The segmentation model is then integrated with a prediction algorithm capable of flagging an entire CT scan as having IVCF. The prediction algorithm utilizing the segmentation model achieved a 92.22% accuracy at detecting IVCF in the scans. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1920220
- PAR ID:
- 10552656
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Diagnostics
- Volume:
- 12
- Issue:
- 10
- ISSN:
- 2075-4418
- Page Range / eLocation ID:
- 2475
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. Accurate colon segmentation on abdominal CT scans is crucial for various clinical applications. In this work, we propose an accurate AQ1 approach to colon segmentation from abdomen CT scans. Our architecture incorporates 3D contextual information via sequential episodic training (SET). In each episode, we used two consecutive slices, in a CT scan, as support and query samples in addition to other slices that did not include colon regions as negative samples. Choosing consecutive slices is a proper assumption for support and query samples, as the anatomy of the body does not have abrupt changes. Unlike traditional few-shot segmentation (FSS) approaches, we use the episodic training strategy in a supervised manner. In addition, to improve the discriminability of the learned features of the model, an embedding space is developed using contrastive learning. To guide the contrastive learning process, we use AQ2 an initial labeling that is generated by a Markov random field (MRF)- based approach. Finally, in the inference phase, we first detect the rec tum, which can be accurately extracted using the MRF-based approach, and then apply the SET on the remaining slices. Experiments on our private dataset of 98 CT scans and a public dataset of 30 CT scans illustrate that the proposed FSS model achieves a remarkable validation dice coefficient (DC) of 97.3% (Jaccard index, JD 94. 5%) compared to the classical FSS approaches 82.1% (JD 70.3%). Our findings highlight the efficacy of sequential episodic training in accurate 3D medical imaging segmentation. The codes for the proposed models are available at https://github.com/Samir-Farag/ICPR2024.more » « less
- 
            null (Ed.)The newly discovered Coronavirus Disease 2019 (COVID-19) has been globally spreading and causing hundreds of thousands of deaths around the world as of its first emergence in late 2019. The rapid outbreak of this disease has overwhelmed health care infrastructures and arises the need to allocate medical equipment and resources more efficiently. The early diagnosis of this disease will lead to the rapid separation of COVID-19 and non-COVID cases, which will be helpful for health care authorities to optimize resource allocation plans and early prevention of the disease. In this regard, a growing number of studies are investigating the capability of deep learning for early diagnosis of COVID-19. Computed tomography (CT) scans have shown distinctive features and higher sensitivity compared to other diagnostic tests, in particular the current gold standard, i.e., the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Current deep learning-based algorithms are mainly developed based on Convolutional Neural Networks (CNNs) to identify COVID-19 pneumonia cases. CNNs, however, require extensive data augmentation and large datasets to identify detailed spatial relations between image instances. Furthermore, existing algorithms utilizing CT scans, either extend slice-level predictions to patient-level ones using a simple thresholding mechanism or rely on a sophisticated infection segmentation to identify the disease. In this paper, we propose a two-stage fully automated CT-based framework for identification of COVID-19 positive cases referred to as the “COVID-FACT”. COVID-FACT utilizes Capsule Networks, as its main building blocks and is, therefore, capable of capturing spatial information. In particular, to make the proposed COVID-FACT independent from sophisticated segmentations of the area of infection, slices demonstrating infection are detected at the first stage and the second stage is responsible for classifying patients into COVID and non-COVID cases. COVID-FACT detects slices with infection, and identifies positive COVID-19 cases using an in-house CT scan dataset, containing COVID-19, community acquired pneumonia, and normal cases. Based on our experiments, COVID-FACT achieves an accuracy of 90.82 % , a sensitivity of 94.55 % , a specificity of 86.04 % , and an Area Under the Curve (AUC) of 0.98, while depending on far less supervision and annotation, in comparison to its counterparts.more » « less
- 
            null (Ed.)Fast and accurate midline shift (MLS) estimation has a significant impact on diagnosis and treatment of patients with Traumatic Brain Injury (TBI). In this paper, we propose an automated method to calculate the amount of shift in the midline structure of TBI patients. The MLS values were annotated by a neuroradiologist. We first select a number of slices among all the slices in a CT scan based on metadata as well as information extracted from the images. After the slice selection, we propose an efficient segmentation technique to detect the ventricles. We use the ventricular geometric patterns to calculate the actual midline and also anatomical information to detect the ideal midline. The distance between these two lines is used as an estimate of MLS. The proposed methods are applied on a TBI dataset where they show a significant improvement of the the proposed method upon existing approach.more » « less
- 
            Objective and Impact Statement . We propose an automated method of predicting Normal Pressure Hydrocephalus (NPH) from CT scans. A deep convolutional network segments regions of interest from the scans. These regions are then combined with MRI information to predict NPH. To our knowledge, this is the first method which automatically predicts NPH from CT scans and incorporates diffusion tractography information for prediction. Introduction . Due to their low cost and high versatility, CT scans are often used in NPH diagnosis. No well-defined and effective protocol currently exists for analysis of CT scans for NPH. Evans’ index, an approximation of the ventricle to brain volume using one 2D image slice, has been proposed but is not robust. The proposed approach is an effective way to quantify regions of interest and offers a computational method for predicting NPH. Methods . We propose a novel method to predict NPH by combining regions of interest segmented from CT scans with connectome data to compute features which capture the impact of enlarged ventricles by excluding fiber tracts passing through these regions. The segmentation and network features are used to train a model for NPH prediction. Results . Our method outperforms the current state-of-the-art by 9 precision points and 29 recall points. Our segmentation model outperforms the current state-of-the-art in segmenting the ventricle, gray-white matter, and subarachnoid space in CT scans. Conclusion . Our experimental results demonstrate that fast and accurate volumetric segmentation of CT brain scans can help improve the NPH diagnosis process, and network properties can increase NPH prediction accuracy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    