Abstract Chemical vapor deposition (CVD)-grown monolayer (ML) molybdenum disulfide (MoS 2 ) is a promising material for next-generation integrated electronic systems due to its capability of high-throughput synthesis and compatibility with wafer-scale fabrication. Several studies have described the importance of Schottky barriers in analyzing the transport properties and electrical characteristics of MoS 2 field-effect-transistors (FETs) with metal contacts. However, the analysis is typically limited to single devices constructed from exfoliated flakes and should be verified for large-area fabrication methods. In this paper, CVD-grown ML MoS 2 was utilized to fabricate large-area (1 cm × 1 cm) FET arrays. Two different types of metal contacts (i.e. Cr/Au and Ti/Au) were used to analyze the temperature-dependent electrical characteristics of ML MoS 2 FETs and their corresponding Schottky barrier characteristics. Statistical analysis provides new insight about the properties of metal contacts on CVD-grown MoS 2 compared to exfoliated samples. Reduced Schottky barrier heights (SBH) are obtained compared to exfoliated flakes, attributed to a defect-induced enhancement in metallization of CVD-grown samples. Moreover, the dependence of SBH on metal work function indicates a reduction in Fermi level pinning compared to exfoliated flakes, moving towards the Schottky–Mott limit. Optical characterization reveals higher defect concentrations in CVD-grown samples supporting a defect-induced metallization enhancement effect consistent with the electrical SBH experiments.
more »
« less
This content will become publicly available on October 23, 2026
Aging studies on chemical vapor deposition and mechanically exfoliated molybdenum disulfide flakes heated in ambient air
Abstract The structural integrity of atomically thin two-dimensional molybdenum disulfide (MoS2) is crucial for high-temperature applications, including nanoelectronics and optoelectronics. This study explores the structural stability and electrical performance, under extended thermal exposure in air, of MoS2flakes synthesized via chemical vapor deposition (CVD) and mechanical exfoliation. The MoS2flakes, both CVD-grown and mechanically exfoliated, were subjected to heating at 200 °C with a relative humidity of 60(±5)% for a prolonged period and investigated with atomic force microscopy and Raman spectroscopy. This study shows that CVD-grown flakes developed noticeable cracks after prolonged heating, whereas mechanically exfoliated flakes mostly retained their structural integrity. Also, both types of flakes showed a decrease in layer thickness and lateral size over time, with mechanically exfoliated flakes exhibiting a comparatively smaller reduction in substrate coverage area. In addition, MoS2-based two-terminal devices were subjected to heating at 150 °C for approximately 1100 h, and their electrical characterization revealed a steady rise in current during constant voltage (5 V) conditions. This study enhances our understanding of MoS2stability and provides guidance for improving the reliability of MoS2-based devices in high-temperature electronic applications.
more »
« less
- Award ID(s):
- 2305013
- PAR ID:
- 10644151
- Publisher / Repository:
- IOP Publishing Ltd
- Date Published:
- Journal Name:
- Nanotechnology
- Volume:
- 36
- Issue:
- 43
- ISSN:
- 0957-4484
- Page Range / eLocation ID:
- 435701
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract 2D layered semiconductors have attracted considerable attention for beyond‐Si complementary metal‐oxide‐semiconductor (CMOS) technologies. They can be prepared into ultrathin channel materials toward ultrascaled device architectures, including double‐gate field‐effect‐transistors (DGFETs). This work presents an experimental analysis of DGFETs constructed from chemical vapor deposition (CVD)‐grown monolayer (1L) molybdenum disulfide (MoS2) with atomic layer deposition (ALD) of hafnium oxide (HfO2) high‐k gate dielectrics (top and bottom). This extends beyond previous studies of DGFETs based mostly on exfoliated (few‐nm thick) MoS2flakes, and advances toward large‐area wafer‐scale processing. Here, significant improvements in performance are obtained with DGFETs (i.e., improvements in ON/OFF ratio, ON‐state current, sub‐threshold swing, etc.) compared to single top‐gate FETs. In addition to multi‐gate device architectures (e.g., DGFETs), the scaling of the equivalent oxide thickness (EOT) is crucial toward improved electrostatics required for next‐generation transistors. However, the impact of EOT scaling on the characteristics of CVD‐grown MoS2DGFETs remains largely unexplored. Thus, this work studies the impact of EOT scaling on subthreshold swing (SS) and gate hysteresis using current–voltage (I–V) measurements with varying sweep rates. The experimental analysis and results elucidate the basic mechanisms responsible for improvements in CVD‐grown 1L‐MoS2DGFETs compared to standard top‐gate FETs.more » « less
-
Abstract The oxidation mechanism of atomically thin molybdenum disulfide (MoS2) plays a critical role in its nanoelectronics, optoelectronics, and catalytic applications, where devices often operate in an elevated thermal environment. In this study, we systematically investigate the oxidation of mono- and few-layer MoS2flakes in the air at temperatures ranging from 23 °C to 525 °C and relative humidities of 10%–60% by using atomic force microscopy (AFM), Raman spectroscopy and x-ray photoelectron spectroscopy. Our study reveals the formation of a uniform nanometer-thick physical adsorption layer on the surface of MoS2, which is attributed to the adsorption of ambient moisture. This physical adsorption layer acts as a thermal shield of the underlying MoS2lattice to enhance its thermal stability and can be effectively removed by an AFM tip scanning in contact mode or annealing at 400 °C. Our study shows that high-temperature thermal annealing and AFM tip-based cleaning result in chemical adsorption on sulfur vacancies in MoS2, leading to p-type doping. Our study highlights the importance of humidity control in ensuring reliable and optimal performance for MoS2-based electronic and electrochemical devices and provides crucial insights into the surface engineering of MoS2, which are relevant to the study of other two-dimensional transition metal dichalcogenide materials and their applications.more » « less
-
Abstract The van der Waals magnets CrX3(X = I, Br, and Cl) exhibit highly tunable magnetic properties and are promising candidates for developing novel two‐dimensional (2D) spintronic devices such as magnetic tunnel junctions and spin tunneling transistors. Previous studies of the antiferromagnetic CrCl3have mainly focused on mechanically exfoliated samples. Controlled synthesis of high quality atomically thin flakes is critical for their technological implementation but has not been achieved to date. This work reports the growth of large CrCl3flakes down to monolayer thickness via the physical vapor transport technique. Both isolated flakes with well‐defined facets and long stripe samples with the trilayer portion exceeding 60 µm have been obtained. High‐resolution transmission electron microscopy studies show that the CrCl3flakes are single crystalline in the monoclinic structure, consistent with the Raman results. The room temperature stability of the CrCl3flakes decreases with decreasing thickness. The tunneling magnetoresistance of graphite/CrCl3/graphite tunnel junctions confirms that few‐layer CrCl3possesses in‐plane magnetic anisotropy and Néel temperature of 17 K. This study paves the path for developing CrCl3‐based scalable 2D spintronic applications.more » « less
-
Abstract NaCl has widely been used as a seeding promoter for chemical vapor deposition of large-scale 2D transition metal dichalcogenides. In this work, we report a study of the influence of NaCl on the growth and optical properties of layered CVD-grown WS2using steady-state and time-resolved Kerr rotation measurements at room temperature. Strong photoluminescence (PL) signals from single flakes grown with a low NaCl content indicates direct band-gap emission, whereas flakes grown with higher amounts of NaCl exhibit red-shifted, weaker PL. Raman measurements from single flakes also indicate that WS2grown with higher NaCl amounts result in multilayered structures, while lower NaCl quantities yield monolayer WS2. Ultrafast carrier decay measurements from single flakes also indicate a NaCl-dependent on the valley exchange interaction component (<10 ps) and slower decay components (>50 ps), attributed to a combination of phenomena, such as the band gap transitioning from direct to indirect and defect-related localized states. Our study provides insight into the influence of seeding promoters in layered CVD-grown WS2in particular and 2D transition metal dichalcogenides in general.more » « less
An official website of the United States government
