Abstract The ignition of plasmas in liquids has applications from medical instrumentation to manipulation of liquid chemistry. Formation of plasmas directly in a liquid often requires prohibitively large voltages to initiate breakdown. Producing plasma streamers in bubbles submerged in a liquid with higher permittivity can significantly lower the voltage needed to initiate a discharge by reducing the electric field required to produce breakdown. The proximity of the bubble to the electrodes and the shape of the bubbles play critical roles in the manner in which the plasma is produced in, and propagates through, the bubble. In this paper, we discuss results from a three-dimensional direct numerical simulation (DNS) used to investigate the shapes of bubbles formed by injection of air into water. Comparisons are made to results from a companion experiment. A two-dimensional plasma hydrodynamics model was then used to capture the plasma streamer propagation in the bubble using a static bubble geometry generated by the DNS The simulations showed two different modes for streamer formation depending on the bubble shape. In an elliptical bubble, a short electron avalanche triggered a surface ionization wave (SIWs) resulting in plasma propagating along the surface of the bubble. In a circular bubble, an electron avalanche first traveled through the middle of the bubble before two SIWs began to propagate from the point closest to the grounded electrode where a volumetric streamer intersected the surface. In an elliptical bubble approaching a powered electrode in a pin-to-pin configuration, we experimentally observed streamer behavior that qualitatively corresponds with computational results. Optical emission captured over the lifetime of the streamer curve along the path of deformed bubbles, suggesting propagation of the streamer along the liquid/gas boundary interface. Plasma generation supported by the local field enhancement of the deformed bubble surface boundaries is a mechanism that is likely responsible for initiating streamer formation.
more »
« less
This content will become publicly available on December 1, 2026
The Effect of Electrode Geometry on Excited Species Production in Atmospheric Pressure Air–Hydrogen Streamer Discharge
When a gas is overvolted at or near atmospheric pressure, it results in a streamer discharge formation. Electrode geometries exert significant impact on the electrical breakdown of gases by altering the spatial profile of the electric field. In many applications the efficient generation of radicals is critical and is determined by the characteristics of the streamer discharge. We examine the effect of electrode geometry on the streamer characteristics and the production of radicals. This is performed for three different electrode geometries: plane–plane, pin–plane, and pin–pin. A two-dimensional rotationally symmetric fluid model is used for the streamer discharge simulation in the hydrogen/air gas mixture. The spatial profile of electron density and the electric field for point electrodes show significant differences when compared to plane electrodes. However, the efficiency of radical generation shows similar trends for the electrode configurations studied. We also present the results of spatial electrical energy density distribution which in turn determines spatial excited species distribution. These results can inform the design of specific applications.
more »
« less
- Award ID(s):
- 2337461
- PAR ID:
- 10644410
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Plasma
- Volume:
- 8
- Issue:
- 4
- ISSN:
- 2571-6182
- Page Range / eLocation ID:
- 42
- Subject(s) / Keyword(s):
- electrode geometry streamer discharge excited species G-factors nanosecond pulse discharges pin electrodes
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the streamer model. The role of the nonthermal plasma in such discharges is to produce radicals, which accelerates the chemical conversion reaction leading to temperature rise and ignition. Therefore, the characterization of the streamer and its energy partitioning is essential to develop a predictive model. We examine the important characteristics of streamers that influence combustion and develop some macroscopic parameters. Our results show that the radicals’ production efficiency at an applied field is nearly independent of time and the radical density generated depends only on the electrical energy density coupled to the plasma. We compare the results of the streamer model to the zero-dimensional uniform field Townsend-like discharge, and our results show a significant difference. The results concerning the influence of energy density and repetition rate on the ignition of a hydrogen/air fuel mixture are presented.more » « less
-
Abstract The present work improves a phenomenological plasma-assisted combustion model by integrating the spatiotemporal distribution of plasma power density, thereby considering the evolution of plasma streamers in the modeling, and subsequently, better predicting the ignition kernel evolution. The improved phenomenological model is validated against experiments representing the plasma discharge and post-discharge ignition kernel evolution. Specifically, the new model demonstrates a more accurate prediction of ultrafast gas heating and O2dissociation during the plasma discharge, compared to the original model. In addition, the new model is found to closely match the experimental pressure wave and heated channel profiles post-discharge without the need for tuning the energy deposition (unlike the original model), highlighting its accuracy of post-discharge ignition kernel dynamics. The improved phenomenological model is then employed to investigate ignition kernel evolution for a stoichiometric methane-air discharge across various discharge gap configurations. Simulations reveal a non-uniform temperature and streamer distribution progressing from the electrode tips toward the center, contrasting uniform cylindrical discharges previously described in the original model. Streamer propagation is observed to be faster for larger gaps when maintained at the same average electric field for different discharge gaps. The tendency of smaller gaps to produce detached toroidal ignition kernels is observed, while larger gaps promote cylindrical and attached ignition kernels. Interactions between successive ignition kernels from consecutive discharges varied significantly, with the smallest gap (1 mm) promoting the quenching of the preceding ignition kernel due to the initial kernel–kernel separation. The intermediate gap (2 mm) promotes detached kernel growth. In contrast, in the largest gap (4 mm), kernels consistently combine and expand attached to electrodes. The impact of homogeneous isotropic turbulence is also explored, showing the persistence of ignition kernels early on but eventually quenching due to enhanced radical and heat losses with pronounced turbulence intensity.more » « less
-
Lopez, J. L. (Ed.)In this study, voltage distribution and surface dielectric barrier discharge (DBD) of a microplasma discharge device (MDD) were modeled in 2-D domain using finite-element analysis (FEA). Initially, the voltage distribution across comb-, H-tree-, and honeycomb-structured MDD was analyzed. Then, the cross section of an MDD consisting of a polyimide-based dielectric sandwiched between two copper electrodes was used for modeling the microplasma discharge characteristics in an argon environment. A sinusoidal voltage was applied to one of the copper electrodes while the other electrode was grounded. The spatial distributions of electron temperature (ET) across the electrodes for varying input voltages were simulated to demonstrate the importance of breakdown voltage. A detailed analysis on the effect of varying electrode and dielectric barrier thicknesses on electron density and ET was also performed to understand the importance of optimizing device configurations for microplasma discharge. Moreover, MDD was also simulated in varying ambient temperature and pressure conditions to evaluate their effect on ET and density across the electrodes. The results from these simulations provide a better understanding of parameters such as varying input voltage, electrode, and dielectric thickness on ET and electron density. This enables us to optimize design parameters for fabricating MDDs and the operating conditions for effective sterilization applications.more » « less
-
In the transient phase of an atmospheric pressure discharge, the avalanche turns into a streamer discharge with time. Hydrodynamic fluid models are frequently used to describe the formation and propagation of streamers, where charge particle transport is dominated by the creation of space charge. The required electron transport data and rate coefficients for the fluid model are parameterized using the local mean energy approximation (LMEA) and the local field approximation (LFA). In atmospheric pressure applications, the excited species produced in the electrical discharge determine the subsequent conversion chemistry. We performed the fluid model simulation of streamers in nitrogen gas at atmospheric pressure using three different parametrizations for transport and electron excitation rate data. We present the spatial and temporal development of several macroscopic properties such as electron density and energy, and the electric field during the transient phase. The species production efficiency, which is important to understand the efficacy of any application of non-thermal plasmas, is also obtained for the three different parametrizations. Our results suggest that at atmospheric pressure, all three schemes predicted essentially the same macroscopic properties. Therefore, a lower-order method such as LFA, which does not require the solution of the energy conservation equation, should be adequate to determine streamer macroscopic properties to inform most plasma-assisted applications of nitrogen-containing gases at atmospheric pressure.more » « less
An official website of the United States government
