skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 20, 2026

Title: Removing the Critical Thickness of Improper Ferroelectrics via Interfacial Reconstruction
The atomic structures at epitaxial film–substrate interfaces determine the scalability of thin films and can result in new phenomena. However, it is challenging to control the structure of the interface. In this work, we report the strong tunability of the epitaxial interface of improper ferroelectric hexagonal ferrites deposited on spinel ferrites, achieving the artificial selection of two types of interfaces that are related by a 90° rotation of in-plane epitaxial relations and feature either disordered or hybrid reconstruction. The hybrid-type interface exhibits characteristic structures of both hexagonal ferrites and spinel ferrites, which remove the critical thickness for improper ferroelectricity. This tunable interfacial structure provides critical insight into controlling interfacial clamping to maintain robust improper ferroelectricity at the two-dimensional limit.  more » « less
Award ID(s):
1806147 2145797
PAR ID:
10644497
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Nano Letters
Volume:
25
Issue:
33
ISSN:
1530-6984
Page Range / eLocation ID:
12509 to 12515
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a key factor that determines the strength of magneto-electric (ME) coupling, is much higher than for bulk or thin-film composites. Core–shell nano- and microcomposites of the ferroic phases are the preferred structures, since they are free of any clamping due to substrates that are present in nanobilayers or nanopillars on a substrate. This review concerns recent efforts on ME coupling in coaxial fibers of spinel or hexagonal ferrites for the magnetic phase and PZT or barium titanate for the ferroelectric phase. Several recent studies on the synthesis and ME measurements of fibers with nickel ferrite, nickel zinc ferrite, or cobalt ferrite for the spinel ferrite and M-, Y-, and W-types for the hexagonal ferrites were considered. Fibers synthesized by electrospinning were found to be free of impurity phases and had uniform core and shell structures. Piezo force microscopy (PFM) and scanning microwave microscopy (SMM) measurements of strengths of direct and converse ME effects on individual fibers showed evidence for strong coupling. Results of low-frequency ME voltage coefficient and magneto-dielectric effects on 2D and 3D films of the fibers assembled in a magnetic field, however, were indicative of ME couplings that were weaker than in bulk or thick-film composites. A strong ME interaction was only evident from data on magnetic field-induced variations in the remnant ferroelectric polarization in the discs of the fibers. Follow-up efforts aimed at further enhancement in the strengths of ME coupling in core–shell composites are also discussed in this review. 
    more » « less
  2. Abstract Multiferroic hexagonal rare-earth ferrites (h-RFeO3, R= Sc, Y, and rare earth), in which the improper ferroelectricity and canted antiferromagnetism coexist, have been advocated as promising candidates to pursue the room-temperature multiferroics, because of strong spin-spin interaction. The strong interactions between the ferroic orders and the structural distortions are appealing for high-density, energy-efficient electronic devices. Over the past decade, remarkable advances in atomic-scale synthesis, characterization, and material modeling enable the significant progresses in the understanding and manipulation of ferroic orders and their couplings in h-RFeO3thin films. These results reveal a physical picture of rich ferroelectric and magnetic phenomena interconnected by a set of structural distortions and spin-lattice couplings, which provides guidance for the control of ferroic orders down to the nano scale and the discovery of novel physical phenomena. This review focus on state-of-the-art studies in complex phenomena related to the ferroelectricity and magnetism as well as the magnetoelectric couplings in multiferroic h-RFeO3, based on mostly the recent experimental efforts, aiming to stimulate fresh ideas in this field. 
    more » « less
  3. Tuning spin and charge degrees of freedom of complex oxide materials can enable significant advancements in future spintronics. In this study, by three dimensional strain engineering, we demonstrate room temperature ferroelectricity and magnetoelectricity in a vertically aligned nanocomposite thin film structure, composed of vertical nanopillars of SmFeO3 (SFO) embedded within the NiFeO4 (NFO) matrix. A three-dimensional tensile strain is induced in the SFO as a result of the unique film architecture. The tensile strain in SFO produces strong room temperature ferroelectric response instead of the normally very weak ferroelectricity of unstrained SFO, which is an improper ferroelectric. The induced ferroelectricity in SFO enables self-biased magnetoelectric coupling to be achieved between the two phases (magnetoelectric coupling coefficient ∼4 × 10−11 sm−1 at room temperature). The magnetoelectric coupling is facilitated by strain transfer across the vertical interfaces of the two phases. We additionally observe an exchange bias of ∼200 Oe (at 2 K) surviving up to the room temperature, indicating strongly coupled interfaces of SFO and NFO. These findings represent a step forward in future magnetoelectric RAM devices. 
    more » « less
  4. Concurrent atomistic–continuum simulations are employed to study Si/Ge (111) semicoherent interfaces in terms of their responses to an in‐plane shear and interactions with lattice dislocations. Three types of Si/Ge interfaces, differing in interfacial structures and energy, are considered. Type I interface coincides with the shuffle‐set slip plane and contains a hexagonal network of edge dislocations. Type II and Type III interfaces both coincide with the glide‐set slip plane, yet they contain, respectively, a triangular and a hexagonal network of Shockley partial dislocations. The simulations show that among the three types of interfaces, 1) Type I interface is the least stable subject to an in‐plane shear and 2) Type III interface impedes the gliding of lattice dislocations the most significantly. 
    more » « less
  5. Protein structures at solid/liquid interfaces mediate interfacial protein functions, which are important for many applications. It is difficult to probe interfacial protein structures at buried solid/liquid interfaces in situ at the molecular level. Here, a systematic methodology to determine protein molecular structures (orientation and conformation) at buried solid/liquid interfaces in situ was successfully developed with a combined approach using a nonlinear optical spectroscopic technique – sum frequency generation (SFG) vibrational spectroscopy, isotope labeling, spectra calculation, and computer simulation. With this approach, molecular structures of protein GB1 and its mutant (with two amino acids mutated) were investigated at the polymer/solution interface. Markedly different orientations and similar (but not identical) conformations of the wild-type protein GB1 and its mutant at the interface were detected, due to the varied molecular interfacial interactions. This systematic strategy is general and can be widely used to elucidate protein structures at buried interfaces in situ . 
    more » « less