skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Identifying and controlling inactive and active conformations of a serine protease
Serine proteases have been proposed to dynamically sample inactive and active conformations, but direct evidence at atomic resolution has remained elusive. Using nuclear magnetic resonance (NMR), we identified a single residue, D164, in exfoliative toxin A (ETA) that acts as a molecular “switch” to regulate global dynamic sampling. Mutations at this site shift the balance between inactive and active states, correlating directly with catalytic activity. Beyond identifying this dynamic switch, we demonstrate how it works in concert with other allosterically coupled sites to rationally control enzyme movements and catalytic function. This study provides a framework for linking conformational dynamics to function and paves the way for engineering enzymes, in particular, proteases, with tailored activities for applications in medicine and biotechnology.  more » « less
Award ID(s):
2018144
PAR ID:
10644598
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science Advances
Volume:
11
Issue:
15
ISSN:
2375-2548
Page Range / eLocation ID:
eadu7447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Phosphodiesterase‐5 (PDE5) is responsible for regulating the concentration of the second messenger molecule cGMP by hydrolyzing it into 5′‐GMP. PDE5 is implicated in erectile dysfunction and cardiovascular diseases. The substrate binding site in the catalytic domain of PDE5 is surrounded by several dynamic structural motifs (including the α14 helix, M‐loop, and H‐loop) that are known to switch between inactive and active conformational states via currently unresolved structural intermediates. We evaluated the conformational dynamics of these structural motifs in the apo state and upon binding of an allosteric inhibitor (evodiamine) oravanafil, a competitive inhibitor. We employed enhanced sampling‐based replica exchange solute scaling (REST2) method, principal component analysis (PCA), time‐lagged independent component analysis (tICA), molecular dynamics (MD) simulations, and well‐tempered metadynamics simulations to probe the conformational changes in these structural motifs. Our results support a regulatory mechanism for PDE5, where the α14 helix alternates between an inward (lower activity) conformation and an outward (higher activity) conformation that is accompanied by the folding/unfolding of the α8′ and α8″ helices of the H‐loop. When the allosteric inhibitor evodiamine is bound to PDE5, the inward (inactive) state of the α14 helix is preferred, thus preventing substrate access to the catalytic site. In contrast, competitive inhibitors of PDE5 block catalysis by occupying the active site accompanied by stabilization of the outward conformation of the α14 helix. Defining the conformational dynamics underlying regulation of PDE5 activation will be helpful in rational design of next‐generation small molecules modulators of PDE5 activity. 
    more » « less
  2. Many viruses utilize ringed packaging ATPases to translocate double-stranded DNA into procapsids during replication. A critical step in the mechanochemical cycle of such ATPases is ATP binding, which causes a subunit within the motor to grip DNA tightly. Here, we probe the underlying molecular mechanism by which ATP binding is coupled to DNA gripping and show that a glutamate-switch residue found in AAA+ enzymes is central to this coupling in viral packaging ATPases. Using free-energy landscapes computed through molecular dynamics simulations, we determined the stable conformational state of the ATPase active site in ATP- and ADP-bound states. Our results show that the catalytic glutamate residue transitions from an active to an inactive pose upon ATP hydrolysis and that a residue assigned as the glutamate switch is necessary for regulating this transition. Furthermore, we identified via mutual information analyses the intramolecular signaling pathway mediated by the glutamate switch that is responsible for coupling ATP binding to conformational transitions of DNA-gripping motifs. We corroborated these predictions with both structural and functional experimental measurements. Specifically, we showed that the crystal structure of the ADP-bound P74-26 packaging ATPase is consistent with the structural coupling predicted from simulations, and we further showed that disrupting the predicted signaling pathway indeed decouples ATPase activity from DNA translocation activity in the φ29 DNA packaging motor. Our work thus establishes a signaling pathway that couples chemical and mechanical events in viral DNA packaging motors. 
    more » « less
  3. Rhomboid proteases are ubiquitous intramembrane serine proteases that can cleave transmembrane substrates within lipid bilayers. They exhibit many and diverse functions, such as but not limited to, growth factor signaling, immune and inflammatory response, protein quality control, and parasitic invasion. Human rhomboid protease RHBDL4 has been demonstrated to play a critical role in removing misfolded proteins from the endoplasmic reticulum and is implicated in severe diseases such as various cancers and Alzheimer's disease. Therefore, RHBDL4 is expected to constitute an important therapeutic target for such devastating diseases. Despite its critical role in many biological processes, the enzymatic properties of RHBDL4 remain largely unknown. To enable a comprehensive characterization of RHBDL4's kinetics, catalytic parameters, substrate specificity, and binding modality, we expressed and purified recombinant RHBDL4 and employed it in a Förster resonance energy transfer-based cleavage assay. Until now, kinetic studies have been limited mostly to bacterial rhomboid proteases. Our in vitro platform offers a new method for studying RHBDL4's enzymatic function and substrate preferences. Furthermore, we developed and tested potential inhibitors using our assay and successfully identified peptidyl α-ketoamide inhibitors of RHBDL4 that are highly effective against recombinant RHBDL4. We utilize ensemble docking and molecular dynamics simulations to explore the binding modality of substrate-derived peptides bound to RHBDL4. Our analysis focused on key interactions and dynamic movements within RHBDL4's active site that contributed to binding stability, offering valuable insights for optimizing the nonprime side of RHBDL4 ketoamide inhibitors. In summary, our study offers fundamental insights into RHBDL4's catalytic activities and substrate preferences, laying the foundation for downstream applications such as drug inhibitor screenings and structure-function studies, which will enable the identification of lead drug compounds for RHBDL4. 
    more » « less
  4. Enzymes exist in ensembles of states that encode the energetics underlying their catalysis. Conformational ensembles built from 1231 structures of 17 serine proteases revealed atomic-level changes across their reaction states. By comparing the enzymatic and solution reaction, we identified molecular features that provide catalysis and quantified their energetic contributions to catalysis. Serine proteases precisely position their reactants in destabilized conformers, creating a downhill energetic gradient that selectively favors the motions required for reaction while limiting off-pathway conformational states. The same catalytic features have repeatedly evolved in proteases and additional enzymes across multiple distinct structural folds. Our ensemble-function analyses revealed previously unknown catalytic features, provided quantitative models based on simple physical and chemical principles, and identified motifs recurrent in nature that may inspire enzyme design. 
    more » « less
  5. Introduction: Members of the Ras protein family are involved in sending signals through the human body to regulate processes including cell growth. Acting as a molecular switch, Ras alternates between its active and inactive states (“on” and “off”) depending on its binding to either GTP or GDP. Upon the introduction of a mutation, Ras becomes incapable of performing the GTP hydrolysis reaction at a controlled rate. This results in the protein remaining in the “on” state for prolonged periods of time, disturbing its role in the regulation of cell growth and causing tumors to form. In the genome of cancerous tumors, mutations that permanently activate Ras have been observed and analyzed at three distinct locations, one being Q61. Previous research1 shows how the Q61 residue contributes to the protein’s function by stabilizing the water molecule in the active site, but little research has been done studying the Y32 residue, which has also been implicated in the mechanism. This research investigates the role Y32 plays in activating Ras via introduction of a different amino acid and measurement of the mutated protein’s activity in the hydrolysis of GTP. 
    more » « less