skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Alpine ice core record of large changes in dust, sea-salt, and biogenic aerosol over Europe during deglaciation
Aerosol radiative forcing is an important but often poorly understood component of regional climate. While glacier ice contains the most detailed archives of past atmospheric aerosol composition and temperature, no well-preserved ice records extending into the last climatic transition have been reported for the historically important European region. Here, we use an Alpine ice core to document changes in European aerosols and climate from the end of the last glacial age (LGA) through the Holocene. The core was drilled on a glacier dome in the French Alps called the Dôme du Goûter (DDG), and it provides a stratigraphically intact record of aerosol and climate extending to at least 12 kyears (ky) before present. Although dating near the base of the glacier is not well constrained, the oldest DDG ice layers reflect glacial conditions in western Europe during the LGA. In addition to changes in atmospheric transport, increased sea-salt and dust deposition in western Europe recorded in the LGA ice suggest enhanced westerly winds and more active dust sources, possibly including North Africa. Deposition of terrestrial biogenic indicators during the cold LGA climate was lower, however, consistent with strongly reduced European vegetation. The DDG record of terrestrial biogenic emissions also suggests a decline of European forests throughout the Holocene, resulting from deterioration of climatic conditions and more recently from establishment of the first agricultural societies. The pronounced changes in atmospheric aerosol recorded in Alpine ice imply large variations in aerosol radiative forcing in western Europe during the last 12 ky.  more » « less
Award ID(s):
2102917
PAR ID:
10644602
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Romanowicz, Barbara
Publisher / Repository:
PNAS Nexus
Date Published:
Journal Name:
PNAS Nexus
Volume:
4
Issue:
6
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Despite the multiple impacts of mineral aerosols on global and regional climate and the primary climatic control on atmospheric dust fluxes, dust-climate feedbacks remain poorly constrained, particularly at submillennial time scales, hampering regional and global climate models. We reconstruct Saharan dust fluxes over Western Europe for the last 5000 years, by means of speleothem strontium isotope ratios ( 87 Sr/ 86 Sr) and karst modeling. The record reveals a long-term increase in Saharan dust flux, consistent with progressive North Africa aridification and strengthening of Northern Hemisphere latitudinal climatic gradients. On shorter, centennial to millennial scales, it shows broad variations in dust fluxes, in tune with North Atlantic ocean-atmosphere patterns and with monsoonal variability. Dust fluxes rapidly increase before (and peaks at) Late Holocene multidecadal- to century-scale cold climate events, including those around 4200, 2800, and 1500 years before present, suggesting the operation of previously unknown strong dust-climate negative feedbacks preceding these episodes. 
    more » « less
  2. Abstract. The Greenland Ice Sheet's negative mass balance is driven by a sensitivity to both a warming atmosphere and ocean. The fidelity of ice-sheet models in accounting for ice-ocean interaction is inherently uncertain and often constrained against recent fluctuations in the ice-sheet margin from the previous decades. The geological record can be utilised to contextualise ice-sheet mass loss and understand the drivers of changes at the marine margin across climatic shifts and previous extended warm periods, aiding our understanding of future ice-sheet behaviour. Here, we use the Ice-sheet and Sea-level System Model (ISSM) to explore the Holocene evolution of Ryder Glacier draining into Sherard Osborn Fjord, Northern Greenland. Our modelling results are constrained with terrestrial reconstructions of the paleo-ice sheet margin and an extensive marine sediment record from Sherard Osborn Fjord that details ice dynamics over the past 12.5 ka years. By employing a consistent mesh resolution of <1 km at the ice-ocean boundary, we assess the importance of atmospheric and oceanic changes to Ryder Glacier's Holocene behaviour. Our simulations show that the initial retreat of the ice margin after the Younger Dryas cold period was driven by a warming climate and the resulting fluctuations in Surface Mass Balance. Changing atmospheric conditions remain the first order control in the timing of ice retreat during the Holocene. We find ice-ocean interactions become increasingly fundamental to Ryder's retreat in the mid-Holocene; with higher than contemporary melt rates required to force grounding line retreat and capture the collapse of the ice tongue during the Holocene Thermal Maximum. Regrowth of the tongue during the neo-glacial cooling of the late Holocene is necessary to advance both the terrestrial and marine margins of the glacier. Our results stress the importance of accurately resolving the ice-ocean interface in modelling efforts over centennial and millennial time scales, in particular the role of floating ice tongues and submarine melt, and provide vital analogous for the future evolution of Ryder in a warming climate. 
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program Expedition 382, Iceberg Alley and South Falkland Slope Ice and Ocean Dynamics, will investigate the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in atmospheric CO2 in the past and how ice sheet evolution influenced global sea level. We will drill six sites in the Scotia Sea, east of the Antarctic Peninsula, providing the first deep drilling in this region of the Southern Ocean. We expect to recover >600 m of late Neogene sediment that will be used to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. Expedition 382 expects to deliver the first spatially and temporally integrated record of iceberg flux from “Iceberg Alley,” the main pathway by which icebergs are calved from the margin of the AIS and travel equatorward into warmer waters of the Antarctic Circumpolar Current (ACC). In particular, we will characterize the magnitude of iceberg flux during key times of AIS evolution: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm interval, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition, and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss in this region, address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea, Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water-mass production, CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate climate-dust couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the mid-Pleistocene transition. The principal scientific objective of the South Falkland Slope sites to the north is to reconstruct and understand how ocean circulation and intermediate water formation responds to changes in climate with a special focus on the connectivity between the Atlantic and Pacific basins. The South Falkland Slope Drift, a contourite drift on the Falkland margin deposited between 400 and 2000 m water depth, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front over at least the last 2 My. We anticipate that these sites will yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean and track the migration of the Subantarctic Front. We expect the cored sediments to capture the following significant climate episodes: • The most recent warm interglacials of the late Pleistocene; • The mid-Pleistocene transition, when δ18O records shifted from dominantly 41 to 100 ky periodicity; and possibly • Mid-Pliocene warm intervals, often invoked as the best analog for possible future climate change. 
    more » « less
  4. Abstract. Estimating past aerosol radiative effects and their uncertainties is an important topic in climate science. Aerosol radiative effects propagate into large uncertainties in estimates of how present and future climate evolves with changing greenhouse gas emissions. A deeper understanding of how aerosols affected the atmospheric energy budget under past climates is hindered in part by a lack of relevant paleo-observations and in part because less attention has been paid to the problem. Because of the lack of information we do not seek here to determine the change in the radiative forcing due to aerosol changes but rather to estimate the uncertainties in those changes. Here we argue that current uncertainties from emission uncertainties (90 % confidence interval range spanning 2.8 W m−2) are just as large as model spread uncertainties (2.8 W m−2) in calculating preindustrial to present-day aerosol radiative effects. There are no estimates of radiative forcing for important aerosols such as wildfire and dust aerosols in most paleoclimate time periods. However, qualitative analysis of paleoclimate proxies suggests that changes in aerosols between different past climates are similar in magnitude to changes in aerosols between the preindustrial and present day; plus, there is the added uncertainty from the variability in aerosols and fires in the preindustrial. From the limited literature we crudely estimate a paleoclimate aerosol uncertainty for the Last Glacial Maximum relative to preindustrial of 4.8 W m−2, and we estimate the uncertainty in the aerosol feedback in the natural Earth system over the paleoclimate (Last Glacial Maximum to preindustrial) to be about 3.2 W m−2 K−1. In order to more accurately assess the uncertainty in historical aerosol radiative effects, we propose a new model intercomparison project, which would include multiple plausible emission scenarios tested across a range of state-of-the-art climate models over the historical period. These emission scenarios would then be compared to the available independent aerosol observations to constrain which are most probable. In addition, future efforts should work to characterize and constrain paleo-aerosol forcings and uncertainties. Careful propagation of aerosol uncertainties in the literature is required to ensure an accurate quantification of uncertainties in projections of future climate changes. 
    more » « less
  5. Waitt RB, Thackray GD (Ed.)
    Mountain glacier moraine sequences and their chronologies allow us to evaluate the timing and climate conditions that underpin changes in the equilibrium line altitudes (ELAs), which can provide valuable information on the paleoclimatology of understudied regions such as tropical East Africa. However, moraine sequences are inherently discontinuous, and the precise climate conditions that they represent can be ambiguous due to the sensitivity of mountain glaciers to temperature, precipitation, and other environmental variables. Here, we used a two-dimensional (2-D) iceflow and mass-balance model to simulate glacier extents and ELAs in the Rwenzori Mountains in East Africa over the past 31,000 yr (31 k.y.), including the Last Glacial Maximum (LGM), late glacial period, and the Holocene Epoch. We drove the glacier model with two independent, continuous temperature reconstructions to simulate possible glacier length changes through time. Model input paleoclimate values came from branched glycerol dialkyl glycerol tetraether (brGDGT) temperature reconstructions from alpine lakes on Mount Kenya for the last ~31 k.y., and precipitation reconstructions for the LGM came from various East African locations. We then compared the simulated fluctuations with the positions and ages (where known) of the Rwenzori moraines. The simulated glacier extents reached within 1.1 km of the dated LGM moraines in one valley (93% of the full LGM extent) when forced by the brGDGT temperature reconstructions (maximum cooling of 6.1 °C) and a decrease in precipitation (-10% than modern amounts). These simulations suggest that the Rwenzori glaciers required a cooling of at least 6.1 °C to reach the dated LGM moraines. Based on the model output, we predict an age of 12–11 ka for moraines located halfway between the LGM and modern glacier extents. We also predict ice-free conditions in the Rwenzori Mountains for most of the early to middle Holocene, followed by a late Holocene glacier readvance within the last 2000 yr. 
    more » « less