skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: [W]hat Lies Beneath: Using Latent Networks to Improve Spatial Predictions
Abstract Spatial interdependencies commonly drive the spread of violence in civil conflict. To address such interdependence, scholars often use spatial lags to model the diffusion of violence, but this requires an explicit operationalization of the connectivity matrices that represent the spread of conflict. Unfortunately, in many cases, there are multiple competing processes that facilitate the spread of violence making it difficult to identify the true data-generating process. We show how a network-driven methodology can allow us to account for the spread of violence, even in the cases where we cannot directly measure the factors that drive diffusion. To do so, we estimate a latent connectivity matrix that captures a variety of possible diffusion patterns. We use this procedure to study intrastate conflict in eight conflict-prone countries and show how our framework enables substantially better predictive performance than canonical spatial-lag measures. We also investigate the circumstances under which canonical spatial lags suffice and those under which a latent network approach is beneficial.  more » « less
Award ID(s):
2017180
PAR ID:
10644752
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
International Studies Quarterly
Volume:
66
Issue:
1
ISSN:
0020-8833
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The spatial distribution of population affects disease transmission, especially when shelter in place orders restrict mobility for a large fraction of the population. The spatial network structure of settlements therefore imposes a fundamental constraint on the spatial distribution of the population through which a communicable disease can spread. In this analysis we use the spatial network structure of lighted development as a proxy for the distribution of ambient population to compare the spatiotemporal evolution of COVID-19 confirmed cases in the USA and China. The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band sensor on the NASA/NOAA Suomi satellite has been imaging night light at ~ 700 m resolution globally since 2012. Comparisons with sub-kilometer resolution census observations in different countries across different levels of development indicate that night light luminance scales with population density over ~ 3 orders of magnitude. However, VIIRS’ constant ~ 700 m resolution can provide a more detailed representation of population distribution in peri-urban and rural areas where aggregated census blocks lack comparable spatial detail. By varying the low luminance threshold of VIIRS-derived night light, we depict spatial networks of lighted development of varying degrees of connectivity within which populations are distributed. The resulting size distributions of spatial network components (connected clusters of nodes) vary with degree of connectivity, but maintain consistent scaling over a wide range (5 × to 10 × in area & number) of network sizes. At continental scales, spatial network rank-size distributions obtained from VIIRS night light brightness are well-described by power laws with exponents near −2 (slopes near −1) for a wide range of low luminance thresholds. The largest components (10 4 to 10 5 km 2 ) represent spatially contiguous agglomerations of urban, suburban and periurban development, while the smallest components represent isolated rural settlements. Projecting county and city-level numbers of confirmed cases of COVID-19 for the USA and China (respectively) onto the corresponding spatial networks of lighted development allows the spatiotemporal evolution of the epidemic (infection and detection) to be quantified as propagation within networks of varying connectivity. Results for China show rapid nucleation and diffusion in January 2020 followed by rapid decreases in new cases in February. While most of the largest cities in China showed new confirmed cases approaching zero before the end of February, most of these cities also showed distinct second waves of cases in March or April. Whereas new cases in Wuhan did not approach zero until mid-March, as of December 2020 it has not yet experienced a second wave of cases. In contrast, the results for the USA show a wide range of trajectories, with an abrupt transition from slow increases in confirmed cases in a small number of network components in January and February, to rapid geographic dispersion to a larger number of components shortly before mobility reductions occurred in March. Results indicate that while most of the upper tail of the network had been exposed by the end of March, the lower tail of the component size distribution has only shown steep increases since mid-June. 
    more » « less
  2. Abstract Nearly 50 million people globally have been internally displaced due to conflict, persecution and human rights violations. However, the study of internally displaced persons—and the design of policies to assist them—is complicated by the fact that these people are often underrepresented in surveys and official statistics. We develop an approach to measure the impact of violence on internal displacement using anonymized high-frequency mobile phone data. We use this approach to quantify the short- and long-term impacts of violence on internal displacement in Afghanistan, a country that has experienced decades of conflict. Our results highlight how displacement depends on the nature of violence. High-casualty events, and violence involving the Islamic State, cause the most displacement. Provincial capitals act as magnets for people fleeing violence in outlying areas. Our work illustrates the potential for non-traditional data sources to facilitate research and policymaking in conflict settings. 
    more » « less
  3. Abstract Building on recent developments in the literature, this article addresses a prominent research question in the study of civil conflict: what explains violence against civilians? We use a novel computational model to investigate the strategic incentives for victimization in a network setting; one that incorporates civilians’ strategic behavior. We argue that conflicts with high network competition—where conflict between any two actors is more likely—lead to higher rates of civilian victimization, irrespective of the conflict's overall intensity or total number of actors. We test our theory in a cross-national setting using event data to generate measures of both conflict intensity and network density. Empirical analysis supports our model's finding that conflict systems with high levels of network competition are associated with a higher level of violence against the civilian population. 
    more » « less
  4. Abstract Schools are often encouraged to foster a positive climate to reduce adolescent violence, but evidence on the effectiveness of this approach varies significantly. This study investigates the roots of this variation by testing alternative hypotheses about how positive school-level climate and school-level student friendship network density interact to shape adolescent violence perpetration. Research on informal social control and network closure suggests that the violence-reducing association of positive school climate will be enhanced among schools where students are more densely tied through their friendships. Research on youth conflict and subversion of control suggests the opposite. These hypotheses are tested with data from Waves I-II of the National Longitudinal Study of Adolescent to Adult Health (n = 11,771; 49% Female; Age mean = 15.04, SD = 1.60). Consistent with the conflict/subversion hypothesis, analyses indicate that the inverse association between positive school climate and adolescent violence is only evident among schools with a very low density of friendship ties. Strikingly, however, there is evidence that a more positive school climate is associated with increases in violence among youth attending schools with a high density of friendship ties. These findings suggest that efforts to reduce violence by fostering cohesion among youth in their schools and other social contexts can be undermined by youth network processes. 
    more » « less
  5. Abstract During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March–June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general. 
    more » « less