The COVID-19 pandemic highlighted the need to quickly respond, via public policy, to the onset of an infectious disease breakout. Deciding the type and level of interventions a population must consider to mitigate risk and keep the disease under control could mean saving thousands of lives. Many models were quickly introduced highlighting lockdowns, testing, contact tracing, travel policies, later on vaccination, and other intervention strategies along with costs of implementation. Here, we provided a framework for capturing population heterogeneity whose consideration may be crucial when developing a mitigation strategy based on non-pharmaceutical interventions. Precisely, we used age-stratified data to segment our population into groups with unique interactions that policy can affect such as school children or the oldest of the population, and formulated a corresponding optimal control problem considering the economic cost of lockdowns and deaths. We applied our model and numerical methods to census data for the state of New Jersey and determined the most important factors contributing to the cost and the optimal strategies to contained the pandemic impact.
more »
« less
This content will become publicly available on March 19, 2026
Optimizing overlapping non-pharmaceutical interventions with a socio-demographic model
Abstract The effectiveness of non-pharmaceutical interventions (NPIs) during a pandemic is challenging to assess due to the multifaceted interactions between interventions and population dynamics. Significant difficulty arises from the overlapping effects of various NPIs applied to different subgroups within a population. To address this, we propose a new mathematical model that incorporates various intervention strategies, including total and partial lockdowns, school closures, and reduced interactions among specific subgroups, such as the elderly. Our model extends previous work by explicitly accounting for the quadratic nature of control costs and the interplay between overlapping controls targeting the same population segments. Using optimal control theory, we identify intervention policies that effectively mitigate disease transmission while balancing economic and societal costs. To demonstrate the utility of our approach, we apply the model to real-world data from the COVID-19 pandemic in the State of New Jersey. Our results provide insights into the trade-offs and synergies of different NPIs and the importance of accurately capturing the relationship between a policy and the population affected.
more »
« less
- Award ID(s):
- 2033580
- PAR ID:
- 10644770
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Bollettino dell'Unione Matematica Italiana
- ISSN:
- 1972-6724
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Strategic response options to the COVID-19 pandemic have been greatly influenced by predictive epidemiological models. Effects of non-pharmaceutical interventions (NPIs; such as mask wearing) unfortunately are based on an abundance of very large uncertainties around the extent to which the population adopts risk reducing behaviors. The effects of NPIs appear to have large heterogeneity across regions, subgroups, and individual mindsets and capabilities. We hypothesize that these uncertainties can be improved with higher-fidelity computational modeling of the social-psychological reactions of individuals, groups, and populations. We build up the ACT-R theory and Instance-Based Learning Theory to formulate psychologically valid agents and develop a framework that integrates multi-level cognitive and social simulation with information networks analysis, and epidemiological predictions. We present initial results from analyses of beliefs and sentiments about COVID-19 NPIs induced from online social media that can provide inputs to seed and validate cognitive agents. We present illustrations of cognitive model hypotheses about the dynamics of behavior change in response to intentions, attitudes, messaging, and source credibility. We present an example of social networks propagating attitude change in response to NPIs.more » « less
-
Abstract We developed a model to compare the impacts of different lifestyle interventions among prediabetes individuals and to identify the optimal age groups for such interventions. A stochastic simulation was developed to replicate the prediabetes and diabetes trends (1997–2010) in the U.S. adult population. We then simulated the population-wide impacts of three lifestyle diabetes prevention programs, i.e., the Diabetes Prevention Program (DPP), DPP-YMCA, and the Healthy Living Partnerships to Prevent Diabetes (HELP-PD), over a course of 10, 15 and 30 years. Our model replicated the temporal trends of diabetes in the U.S. adult population. Compared to no intervention, the diabetes incidence declined 0.3 per 1,000 by DPP, 0.2 by DPP-YMCA, and 0.4 by HELP-PD over the 15-year period. Our simulations identified HELP-PD as the most cost-effective intervention, which achieved the highest 10-year savings of $38 billion for those aged 25–65, assuming all eligible individuals participate in the intervention and considering intervention achievement rates. Our model simulates the diabetes trends in the U.S. population based on individual-level longitudinal data. However, it may be used to identify the optimal intervention for different subgroups in defined populations.more » « less
-
Flegg, Jennifer A. (Ed.)Stay-at-home orders and shutdowns of non-essential businesses are powerful, but socially costly, tools to control the pandemic spread of SARS-CoV-2. Mass testing strategies, which rely on widely administered frequent and rapid diagnostics to identify and isolate infected individuals, could be a potentially less disruptive management strategy, particularly where vaccine access is limited. In this paper, we assess the extent to which mass testing and isolation strategies can reduce reliance on socially costly non-pharmaceutical interventions, such as distancing and shutdowns. We develop a multi-compartmental model of SARS-CoV-2 transmission incorporating both preventative non-pharmaceutical interventions (NPIs) and testing and isolation to evaluate their combined effect on public health outcomes. Our model is designed to be a policy-guiding tool that captures important realities of the testing system, including constraints on test administration and non-random testing allocation. We show how strategic changes in the characteristics of the testing system, including test administration, test delays, and test sensitivity, can reduce reliance on preventative NPIs without compromising public health outcomes in the future. The lowest NPI levels are possible only when many tests are administered and test delays are short, given limited immunity in the population. Reducing reliance on NPIs is highly dependent on the ability of a testing program to identify and isolate unreported, asymptomatic infections. Changes in NPIs, including the intensity of lockdowns and stay at home orders, should be coordinated with increases in testing to ensure epidemic control; otherwise small additional lifting of these NPIs can lead to dramatic increases in infections, hospitalizations and deaths. Importantly, our results can be used to guide ramp-up of testing capacity in outbreak settings, allow for the flexible design of combined interventions based on social context, and inform future cost-benefit analyses to identify efficient pandemic management strategies.more » « less
-
Abstract The rapid rollout of the COVID-19 vaccine raises the question of whether and when the ongoing pandemic could be eliminated with vaccination and non-pharmaceutical interventions (NPIs). Despite advances in the impact of NPIs and the conceptual belief that NPIs and vaccination control COVID-19 infections, we lack evidence to employ control theory in real-world social human dynamics in the context of disease spreading. We bridge the gap by developing a new analytical framework that treats COVID-19 as a feedback control system with the NPIs and vaccination as the controllers and a computational model that maps human social behaviors into input signals. This approach enables us to effectively predict the epidemic spreading in 381 Metropolitan statistical areas (MSAs) in the US by learning our model parameters utilizing the time series NPIs (i.e., the stay-at-home order, face-mask wearing, and testing) data. This model allows us to optimally identify three NPIs to predict infections accurately in 381 MSAs and avoid over-fitting. Our numerical results demonstrate our approach’s excellent predictive power with R 2 > 0.9 for all the MSAs regardless of their sizes, locations, and demographic status. Our methodology allows us to estimate the needed vaccine coverage and NPIs for achieving R e to a manageable level and how the variants of concern diminish the likelihood for disease elimination at each location. Our analytical results provide insights into the debates surrounding the elimination of COVID-19. NPIs, if tailored to the MSAs, can drive the pandemic to an easily containable level and suppress future recurrences of epidemic cycles.more » « less
An official website of the United States government
