PremiseThe southern Florida Everglades landscape sustains wetlands of national and international importance. Sawgrass (Cladium jamaicense), the dominant macrophyte in the Everglades, has two phenotypes that vary in size and density between Everglades marl prairies and peat marshes. Marl prairies have recently been hypothesized to be a newly formed habitat developed after European colonization as a result of landscape‐scale hydrologic modifications, implying that sawgrass marl phenotypes developed in response to the marl habitat. We examined whether sawgrass wetland phenotypes are plastic responses to marl and peat soils. MethodsIn a common‐mesocosm experiment, seedlings from a single Everglades population were grown outdoors in field‐collected marl or peat soils. Growth and morphology of plants were measured over 14 mo, while soil and leaf total nitrogen, total phosphorus, total carbon, and plant biomass and biomass allocation were determined in a final harvest. ResultsSawgrass plant morphology diverged in marl vs. peat soils, and variations in morphology and density of mesocosm‐grown plants resembled differences seen in sawgrass plants growing in marl and peat habitats in Everglades wetlands. Additionally, sawgrass growing in marl made abundant dauciform roots, while dauciform root production of sawgrass growing in peat was correlated with soil total phosphorus. ConclusionsSawgrass from a single population grown in marl or peat soils can mimic sawgrass phenotypes associated with marl vs. peat habitats. This plasticity is consistent with the hypothesis that Everglades marl prairies are relatively new habitats that support plant communities assembled after European colonization and subsequent landscape modifications.
more »
« less
This content will become publicly available on December 1, 2026
Commercial bioinoculants improve colonization but do not alter the arbuscular mycorrhizal fungal community of greenhouse-grown grapevine roots
Abstract BackgroundArbuscular mycorrhizal fungi (AMF) are beneficial root symbionts contributing to improved plant growth and development and resistance to abiotic and biotic stresses. Commercial bioinoculants containing AMF are widely considered as an alternative to agrochemicals in vineyards. However, their effects on grapevine plants grown in soil containing native communities of AMF are still poorly understood. In a greenhouse experiment, we evaluated the influence of five different bioinoculants on the composition of native AMF communities of young Cabernet Sauvignon vines grown in a non-sterile soil. Root colonization, leaf nitrogen concentration, plant biomass and root morphology were assessed, and AMF communities of inoculated and non-inoculated grapevine roots were profiled using high-throughput sequencing. ResultsContrary to our predictions, no differences in the microbiome of plants exposed to native AMF communities versus commercial AMF bioinoculants + native AMF communities were detected in roots. However, inoculation induced positive changes in root traits as well as increased AMF colonization, plant biomass, and leaf nitrogen. Most of these desirable functional traits were positively correlated with the relative abundance of operational taxonomic units identified asGlomus,RhizophagusandClaroideoglomusgenera. ConclusionThese results suggest synergistic interactions between commercial AMF bioinoculants and native AMF communities of roots to promote grapevine growth. Long-term studies with further genomics, metabolomics and physiological research are needed to provide a deeper understanding of the symbiotic interaction among grapevine roots, bioinoculants and natural AMF communities and their role to promote plant adaptation to current environmental concerns.
more »
« less
- Award ID(s):
- 2030338
- PAR ID:
- 10644772
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Environmental Microbiome
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 2524-6372
- Subject(s) / Keyword(s):
- Arbuscular mycorrhizal fungi, Metabarcoding, Bioinoculants, Root traits, Biomass, Grapevine
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract PremiseThe ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant–fungal interactions, especially under environmental stress. MethodsWe tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high). Inoculated and uninoculated plants were grown in controlled conditions for 151 days, then shoot and root biomass were weighed and fungal diversity and community composition determined via amplicon sequencing. ResultsThe source of inoculum and water regime elicited significant changes in plant resource allocation to shoots versus roots, but only specific inocula affected total plant biomass. Shoot biomass increased in the high water treatment but was negatively impacted by all inoculum treatments relative to the controls. The opposite was true for roots, where the low water treatment led to greater proportional root biomass, and plants inoculated with wet site fungi allocated significantly more resources to root growth than dry‐ or moderate‐site inoculated plants and the controls. Fungal communities of shoots and roots partitioned by inoculum source, water treatment, and the interaction of the two. ConclusionsThe provenance of fungi can significantly affect total plant biomass and resource allocation above‐ and belowground, with fungi derived from more extreme environments eliciting the strongest plant responses.more » « less
-
Abstract The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of a worldwide crop from a Recombinant Inbred Line (RIL) population derived fromSorghum bicolorandS. propinquum. The high-throughput phenotyping methods of fungal structures here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer vision for pixel-wise fungal structure segmentations and mixed linear models to explore the relations of AMF colonization, root niche, and fungal structure allocation. Models proposed capture over 95% of the variation in AMF colonization as a function of root niche and relative abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient exchange predict highest AMF colonization in the top root section. Our work demonstrates that deep learning can be used by the community for the high-throughput phenotyping of AMF in plant roots. Mixed linear modeling provides a framework for testing hypotheses about AMF colonization phenotypes as a function of root niche and fungal structure allocations.more » « less
-
Abstract Plant–microbe interactions play an important role in structuring plant communities. Arbuscular mycorrhizal fungi (AMF) are particularly important. Nonetheless, increasing anthropogenic disturbance will lead to novel plant–AMF interactions, altering longstanding co‐evolutionary trajectories between plants and their associated AMF. Although emerging work shows that plant–AMF response can evolve over relatively short time scales due to anthropogenic change, little work has evaluated how plant AMF responsespecificitymay evolve due to novel plant–mycorrhizal interactions. Here, we examine changes in plant–AMF interactions in novel grassland systems by comparing the mycorrhizal response of plant populations from unplowed native prairies with populations from post‐agricultural grasslands to inoculation with both native prairie AMF and non‐native novel AMF. Across four plant species, we find support for evolution of differential responses to mycorrhizal inocula types, that is, mycorrhizal response specificity, consistent with expectations of local adaptation, with plants from native populations responding most to native AMF and plants from post‐agricultural populations responding most to non‐native AMF. We also find evidence of evolution of mycorrhizal response in two of the four plant species, as overall responsiveness to AMF changed from native to post‐agricultural populations. Finally, across all four plant species, roots from native prairie populations had lower levels of mycorrhizal colonization than those of post‐agricultural populations. Our results report on one of the first multispecies assessment of local adaptation to AMF. The consistency of the responses in our experiment among four species provides evidence that anthropogenic disturbance may have unintended impacts on native plant species' association with AMF, causing evolutionary change in the benefit native plant species gain from native symbioses.more » « less
-
Summary To understand factors that influence the assembly of microbial communities, we inoculatedMedicago sativawith a series of nested bacterial synthetic communities and grew plants in distinct nitrogen concentrations. Two isolates in our eight‐member synthetic community,Williamsiasp. R60 andPantoeasp. R4, consistently dominate community structure across nitrogen regimes. WhilePantoeasp. R4 consistently colonizes plants to a higher degree compared to the other six organisms across each community and each nutrient level,Williamsiasp. R60 exhibits nutrient specific colonization differences.Williamsiasp. R60 is more abundant in plants grown at higher nitrogen concentrations, but exhibits the opposite trend when no plant is present, indicating plant‐driven influence over colonization. Our research discovered unique, repeatable colonization phenotypes for individual microbes during plant microbiome assembly, and identified alterations caused by the host plant, microbes, and available nutrients.more » « less
An official website of the United States government
