skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Smart Motor: A Low-Cost Hardware and Software Toolkit for Introducing Supervised Machine Learning to Elementary School Students
With the rise of Artificial Intelligence (AI) systems in society, our children have routine interactions with these technologies. It has become increasingly important for them to understand how these technologies are trained, what their limitations are and how they work. To introduce children to AI and Machine Learning (ML) concepts, recent efforts introduce tools that integrate ML concepts with physical computing and robotics. However, some of these tools cannot be easily integrated into building projects and the high price of robotics kits can be a limiting factor to many schools. We address these limitations by offering a low-cost hardware and software toolkit that we call the Smart Motor to introduce supervised machine learning to elementary school students. Our Smart Motor uses the nearest neighbor algorithm and utilizes visualizations to highlight the underlying decision-making of the model. We conducted a one week long study using Smart Motors with 9- to 12- year old students and measured their learning through observation, questioning and examining what they built. We found that students were able to integrate the Smart Motors into their building projects but some students struggled with understanding how the underlying model functioned. In this paper we discuss these findings and insights for future directions for the Smart Motor.  more » « less
Award ID(s):
2119174
PAR ID:
10644814
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
PKP Publishing Services Network
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
39
Issue:
28
ISSN:
2159-5399
Page Range / eLocation ID:
29128 to 29136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Artificial Intelligence (AI) enhanced systems are widely adopted in post-secondary education, however, tools and activities have only recently become accessible for teaching AI and machine learning (ML) concepts to K-12 students. Research on K-12 AI education has largely included student attitudes toward AI careers, AI ethics, and student use of various existing AI agents such as voice assistants; most of which has focused on high school and middle school. There is no consensus on which AI and Machine Learning concepts are grade-appropriate for elementary-aged students or how elementary students explore and make sense of AI and ML tools. AI is a rapidly evolving technology and as future decision-makers, children will need to be AI literate[1]. In this paper, we will present elementary students’ sense-making of simple machine-learning concepts. Through this project, we hope to generate a new model for introducing AI concepts to elementary students into school curricula and provide tangible, trainable representations of ML for students to explore in the physical world. In our first year, our focus has been on simpler machine learning algorithms. Our desire is to empower students to not only use AI tools but also to understand how they operate. We believe that appropriate activities can help late elementary-aged students develop foundational AI knowledge namely (1) how a robot senses the world, and (2) how a robot represents data for making decisions. Educational robotics programs have been repeatedly shown to result in positive learning impacts and increased interest[2]. In this pilot study, we leveraged the LEGO® Education SPIKE™ Prime for introducing ML concepts to upper elementary students. Through pilot testing in three one-week summer programs, we iteratively developed a limited display interface for supervised learning using the nearest neighbor algorithm. We collected videos to perform a qualitative evaluation. Based on analyzing student behavior and the process of students trained in robotics, we found some students show interest in exploring pre-trained ML models and training new models while building personally relevant robotic creations and developing solutions to engineering tasks. While students were interested in using the ML tools for complex tasks, they seemed to prefer to use block programming or manual motor controls where they felt it was practical. 
    more » « less
  2. Iteratively building and testing machine learning models can help children develop creativity, flexibility, and comfort with machine learning and artificial intelligence. We explore how children use machine teaching interfaces with a team of 14 children (aged 7–13 years) and adult co-designers. Children trained image classifiers and tested each other's models for robustness. Our study illuminates how children reason about ML concepts, offering these insights for designing machine teaching experiences for children: (i) ML metrics (e.g. confidence scores) should be visible for experimentation; (ii) ML activities should enable children to exchange models for promoting reflection and pattern recognition; and (iii) the interface should allow quick data inspection (e.g. images vs. gestures). 
    more » « less
  3. This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks. 
    more » « less
  4. Understanding the inner workings of Artificial Intelligence (AI) recommendation systems may benefit children in becoming more sensible consumers of the ever-growing information in their daily lives. It may further enable deeper reflections on related ethical issues such as the filter bubble. With limited prior knowledge in math and computing, children often find AI concepts overly abstract. Inspired by optical computation, we propose a novel tangible interface, OptiDot. Through exploratory manipulation with light beams, OptiDot supports children in learning the dot product—a building block for numerous AI algorithms—and AI recommendations through embodied learning experiences. Findings of a preliminary user study with ten middle school students indicate the effectiveness of the key embodied metaphors. We also discuss the design implications and challenges of developing optical-inspired learning tools for children. 
    more » « less
  5. While artificial intelligence and machine learning (AI/ML) frameworks gain prominence in science and engineering, most researchers face significant challenges in adopting complex AI/ML workflows to campus and national cyberinfrastructure (CI) environments. Data from the Texas A&M High Performance Computing (HPRC) researcher training program indicate that researchers increasingly want to learn how to migrate and work with their pre-existing AI/ML frameworks on large scale computing environments. Building on the continuing success of our work in developing innovative pedagogical approaches for CI- training approaches, we expand CI-infused pedagogical approaches to teach technology-based AI and data sciences. We revisit the pedagogical approaches used in the decades-old tradition of laboratories in the Physical Sciences that taught concepts via experiential learning. Here, we structure a series of exercises on interactive computing environments that give researchers immediate hands-on experience in AI/ML and data science technologies that they will use as they work on larger CI resources. These exercises, called “tech-labs,” assume that participating researchers are familiar with AI/ML approaches and focus on hands-on exercises that teach researchers how to use these approaches on large-scale CI. The tech-labs offer four consecutive sessions, each introducing a learner to specific technologies offered in CI environments for AI/ML and data workflows. We report on our tech-lab offered for Python-based AI/ML approaches during which learners are introduced to Jupyter Notebooks followed by exercises using Pandas, Matplotlib, Scikit-learn, and Keras. The program includes a series of enhancements such as container support and easy launch of virtual environments in our Web-based computing interface. The approach is scalable to programs using a command line interface (CLI) as well. In all, the program offers a shift in focus from teaching AI/ML toward increasing adoption of AI/ML in large-scale CI. 
    more » « less