Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With the rise of Artificial Intelligence (AI) systems in society, our children have routine interactions with these technologies. It has become increasingly important for them to understand how these technologies are trained, what their limitations are and how they work. To introduce children to AI and Machine Learning (ML) concepts, recent efforts introduce tools that integrate ML concepts with physical computing and robotics. However, some of these tools cannot be easily integrated into building projects and the high price of robotics kits can be a limiting factor to many schools. We address these limitations by offering a low-cost hardware and software toolkit that we call the Smart Motor to introduce supervised machine learning to elementary school students. Our Smart Motor uses the nearest neighbor algorithm and utilizes visualizations to highlight the underlying decision-making of the model. We conducted a one week long study using Smart Motors with 9- to 12- year old students and measured their learning through observation, questioning and examining what they built. We found that students were able to integrate the Smart Motors into their building projects but some students struggled with understanding how the underlying model functioned. In this paper we discuss these findings and insights for future directions for the Smart Motor.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Artificial Intelligence (AI) enhanced systems are widely adopted in post-secondary education, however, tools and activities have only recently become accessible for teaching AI and machine learning (ML) concepts to K-12 students. Research on K-12 AI education has largely included student attitudes toward AI careers, AI ethics, and student use of various existing AI agents such as voice assistants; most of which has focused on high school and middle school. There is no consensus on which AI and Machine Learning concepts are grade-appropriate for elementary-aged students or how elementary students explore and make sense of AI and ML tools. AI is a rapidly evolving technology and as future decision-makers, children will need to be AI literate[1]. In this paper, we will present elementary students’ sense-making of simple machine-learning concepts. Through this project, we hope to generate a new model for introducing AI concepts to elementary students into school curricula and provide tangible, trainable representations of ML for students to explore in the physical world. In our first year, our focus has been on simpler machine learning algorithms. Our desire is to empower students to not only use AI tools but also to understand how they operate. We believe that appropriate activities can help late elementary-aged students develop foundational AI knowledge namely (1) how a robot senses the world, and (2) how a robot represents data for making decisions. Educational robotics programs have been repeatedly shown to result in positive learning impacts and increased interest[2]. In this pilot study, we leveraged the LEGO® Education SPIKE™ Prime for introducing ML concepts to upper elementary students. Through pilot testing in three one-week summer programs, we iteratively developed a limited display interface for supervised learning using the nearest neighbor algorithm. We collected videos to perform a qualitative evaluation. Based on analyzing student behavior and the process of students trained in robotics, we found some students show interest in exploring pre-trained ML models and training new models while building personally relevant robotic creations and developing solutions to engineering tasks. While students were interested in using the ML tools for complex tasks, they seemed to prefer to use block programming or manual motor controls where they felt it was practical.more » « less
An official website of the United States government

Full Text Available