This content will become publicly available on January 1, 2026
Title: Light Edge Fault Tolerant Graph Spanners
There has recently been significant interest in fault tolerant spanners, which are spanners that still maintain their stretch guarantees after some nodes or edges fail. This work has culminated in an almost complete understanding of the three-way tradeoff between stretch, sparsity, and number of faults tolerated. However, despite some progress in metric settings, there have been no results to date on the tradeoff in general graphs between stretch, lightness, and number of faults tolerated. We initiate the study of light edge fault tolerant (EFT) graph spanners, obtaining the first such results. First, we observe that lightness can be unbounded if we use the traditional definition (normalizing by the MST). We then argue that a natural definition of fault-tolerant lightness is to instead normalize by a min-weight fault tolerant connectivity preserver; essentially, a fault-tolerant version of the MST. However, even with this, we show that it is still not generally possible to construct f-EFT spanners whose weight compares reasonably to the weight of a min-weight f-EFT connectivity preserver. In light of this lower bound, it is natural to then consider bicriteria notions of lightness, where we compare the weight of an f-EFT spanner to a min-weight (f' > f)-EFT connectivity preserver. The most interesting question is to determine the minimum value of f' that allows for reasonable lightness upper bounds. Our main result is a precise answer to this question: f' = 2f. In particular, we show that the lightness can be untenably large (roughly n/k for a k-spanner) if one normalizes by the min-weight (2f-1)-EFT connectivity preserver. But if one normalizes by the min-weight 2f-EFT connectivity preserver, then we show that the lightness is bounded by just O(f^{1/2}) times the non-fault tolerant lightness (roughly n^{1/k} for a (1+ε)(2k-1)-spanner). more »« less
Bodwin, Greg; Dinitz, Michael; Robelle, Caleb
(, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA))
null
(Ed.)
Recent work has pinned down the existentially optimal size bounds for vertex fault-tolerant spanners: for any positive integer k, every n-node graph has a (2k – 1)-spanner on O(f^{1–1/k} n^{1+1/k}) edges resilient to f vertex faults, and there are examples of input graphs on which this bound cannot be improved. However, these proofs work by analyzing the output spanner of a certain exponential-time greedy algorithm. In this work, we give the first algorithm that produces vertex fault tolerant spanners of optimal size and which runs in polynomial time. Specifically, we give a randomized algorithm which takes Õ(f^{1–1/k} n^{2+1/k} + mf2) time. We also derandomize our algorithm to give a deterministic algorithm with similar bounds. This reflects an exponential improvement in runtime over [Bodwin-Patel PODC '19], the only previously known algorithm for constructing optimal vertex fault-tolerant spanners.
Bhore, Sujoy; Filtser, Arnold; Khodabandeh, Hadi; Toth, Csaba D.
(, 30th Annual European Symposium on Algorithms (ESA 2022))
Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness.
Bhore, Sujoy; Filtser, Arnold; Khodabandeh, Hadi; Toth, Csaba D.
(, Proc. 30th Annual European Symposium on Algorithms (ESA))
Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness.
Toth, Csaba D.
(, Graph-Theoretic Concepts in Computer Science)
Given a set S of n points in the plane and a parameter ε>0, a Euclidean (1+ε) -spanner is a geometric graph G=(S,E) that contains a path of weight at most (1+ε)∥pq∥2 for all p,q∈S . We show that the minimum weight of a Euclidean (1+ε)-spanner for n points in the unit square [0,1]2 is O(ε−3/2n−−√), and this bound is the best possible. The upper bound is based on a new spanner algorithm that sparsifies Yao-graphs. It improves upon the baseline O(ε−2n−−√), obtained by combining a tight bound for the weight of an MST and a tight bound for the lightness of Euclidean (1+ε)-spanners, which is the ratio of the spanner weight to the weight of the MST. The result generalizes to d-space for all d∈N : The minimum weight of a Euclidean (1+ε)-spanner for n points in the unit cube [0,1]d is Od(ε(1−d2)/dn(d−1)/d), and this bound is the best possible. For the n×n section of the integer lattice, we show that the minimum weight of a Euclidean (1+ε)-spanner is between Ω(ε−3/4n2) and O(ε−1log(ε−1)n2). These bounds become Ω(ε−3/4n−−√) and O(ε−1log(ε−1)n−−√) when scaled to a grid of n points in [0,1]2. .
Bhore, Sujoy; Toth, Csaba D.
(, 37th International Symposium on Computational Geometry (SoCG 2021))
null
(Ed.)
Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner weight to the weight of the minimum spanning tree of a finite set of points in ℝ^d. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on ε > 0 and d ∈ ℕ of the minimum lightness of a (1+ε)-spanner, and observed that additional Steiner points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner (1+ε)-spanners of lightness O(ε^{-1}logΔ) in the plane, where Δ ≥ Ω(√n) is the spread of the point set, defined as the ratio between the maximum and minimum distance between a pair of points. They also constructed spanners of lightness Õ(ε^{-(d+1)/2}) in dimensions d ≥ 3. Recently, Bhore and Tóth (2020) established a lower bound of Ω(ε^{-d/2}) for the lightness of Steiner (1+ε)-spanners in ℝ^d, for d ≥ 2. The central open problem in this area is to close the gap between the lower and upper bounds in all dimensions d ≥ 2. In this work, we show that for every finite set of points in the plane and every ε > 0, there exists a Euclidean Steiner (1+ε)-spanner of lightness O(ε^{-1}); this matches the lower bound for d = 2. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis.
@article{osti_10644861,
place = {Country unknown/Code not available},
title = {Light Edge Fault Tolerant Graph Spanners},
url = {https://par.nsf.gov/biblio/10644861},
DOI = {10.4230/lipics.icalp.2025.32},
abstractNote = {{"Abstract":["There has recently been significant interest in fault tolerant spanners, which are spanners that still maintain their stretch guarantees after some nodes or edges fail. This work has culminated in an almost complete understanding of the three-way tradeoff between stretch, sparsity, and number of faults tolerated. However, despite some progress in metric settings, there have been no results to date on the tradeoff in general graphs between stretch, lightness, and number of faults tolerated.\r\nWe initiate the study of light edge fault tolerant (EFT) graph spanners, obtaining the first such results. First, we observe that lightness can be unbounded if we use the traditional definition (normalizing by the MST). We then argue that a natural definition of fault-tolerant lightness is to instead normalize by a min-weight fault tolerant connectivity preserver; essentially, a fault-tolerant version of the MST. However, even with this, we show that it is still not generally possible to construct f-EFT spanners whose weight compares reasonably to the weight of a min-weight f-EFT connectivity preserver.\r\nIn light of this lower bound, it is natural to then consider bicriteria notions of lightness, where we compare the weight of an f-EFT spanner to a min-weight (f' > f)-EFT connectivity preserver. The most interesting question is to determine the minimum value of f' that allows for reasonable lightness upper bounds. Our main result is a precise answer to this question: f' = 2f. In particular, we show that the lightness can be untenably large (roughly n/k for a k-spanner) if one normalizes by the min-weight (2f-1)-EFT connectivity preserver. But if one normalizes by the min-weight 2f-EFT connectivity preserver, then we show that the lightness is bounded by just O(f^{1/2}) times the non-fault tolerant lightness (roughly n^{1/k} for a (1+ε)(2k-1)-spanner)."]}},
journal = {},
volume = {334},
publisher = {Schloss Dagstuhl – Leibniz-Zentrum für Informatik},
author = {Bodwin, Greg and Dinitz, Michael and Koranteng, Ama and Wang, Lily},
editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Joel and Puppis, Gabriele}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.