In the earlier theoretical research, impact of entanglement on folding during crystallization was minimized. The combination of 13C isotope labeling and NMR spectroscopy allows us to quantitatively determine stem to stem distance as well as chain folding distance, hence, we are able to probe chain-level structure. Our recent work indicated that polymer chains are possible to fold prior to crystallization. In this poster, we would like to investigate the folding structure of a semi-crystalline polymer in melt-grown crystals (mgc) by using solid-state NMR spectroscopy and SAXS measurement. First, various 13C enriched poly(L-lactic acid) (PLLA) samples with different molecular weights (Mw = 2.5k – 300k g/mol) across critical entanglement length (Mc = 16k g/mol) were prepared in order to observe the molecular weight dependence of folding structure of PLLA. We revealed that entanglements influence the folding number during crystallization. Second, we attempt to observe the entanglement effect through diluting entanglement density, i.e., blending the PLLA above and below the Mc with different ratio and molecular weight. Based on the experimental results, we would like to highlight the impact of entanglements on folding of semicrystalline polymer in the melt-grown crystal.
more »
« less
This content will become publicly available on March 20, 2026
Elucidations of Chain-Level Structure of Semicrystalline Polymer Freeze-Dried from a Dilute Solution by Solid-State NMR spectroscopy
Chain entanglements play a crucial role in polymer crystallization, yet their effects on crystallization remain not fully understood. Freeze-drying is one way to potentially preserve disentangled states of long polymer chains. In fact, it is known that freeze-drying (FD) significantly accelerates the crystallization kinetics of semicrystalline polymers. However, the chain-level structure of the FD polymer chains without a long-range order (glass) has been a debatable matter. In this study, we investigate the effect of freeze-drying on single chain-level structures of 13CH3 enriched poly(L-lactic Acid) and 13CH enriched poly(D-lactic acid) racemate by using 1H-1H spin diffusion via 13C detection solid-state NMR spectroscopy. Spatial distributions of PLLA and PDLA glassy chains in the range of a few Å – 30 nm are evaluated via 1H-1H spin diffusion. This analysis provides core-shell morphology of single chains where the outer shell layers include both PDLA and PLLA mixture and the inner core possess a single component.
more »
« less
- Award ID(s):
- 2004393
- PAR ID:
- 10645110
- Publisher / Repository:
- APS
- Date Published:
- Format(s):
- Medium: X
- Location:
- Anaheim CA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Korley, LaShanda (Ed.)The crystallization pathway of long and flexible polymer chains is debatable because of the lack of an initial melt/glass structure. To identify the crystallization pathway, we focus on two binary blends of poly(lactic acid) racemates that form stereocomplex crystals (SCCs). NMR crystallography is used to identify the stereocomplex (SC) structure and SC fraction with or without long-range order. There are significant structural analogies between glass and crystals for both high-molecular-weight (M) and low-M racemates. The observed analogies and kinetics of crystallization indicate that polymer crystallization proceeds via chain segments moving the least possible distance (“freezing in” mechanism) and that topological constraints govern nucleation barriers.more » « less
-
Abstract Single crystals that do not obey translational symmetry have been reported in various material systems. In polymers, twisted crystals are typically formed in banded spherulites, while a class of non‐flat polymer single crystals (PSCs) has been observed. Herein, we report the formation of scrolled single crystals of biodegradable polymer poly(L‐lactic acid) (PLLA). While classical 2‐dimensional single crystals formed in solution‐crystallized PLLA are flat, we show that PLLA crystals bend into scrolls when the polymer molecular weight is low. The formation of these unique scrolled PLLA single crystals depends on polymer chain ends and the polymer molecular weight. This work, therefore, demonstrates a new mechanism to break translational symmetry in PSC growth.more » « less
-
Abstract In an effort to synthesize chemically recyclable thermoplastic elastomers, a redox‐switchable catalytic system was developed to synthesize triblock copolymers containing stiff poly(lactic acid) (PLA) end blocks and a flexible poly(tetrahydrofuran‐co‐cyclohexene oxide) (poly(THF‐co‐CHO) copolymer as the mid‐block. The orthogonal reactivity induced by changing the oxidation state of the iron‐based catalyst enabled the synthesis of the triblock copolymers in a single reaction flask from a mixture of monomers. The triblock copolymers demonstrated improved flexibility compared to poly(l‐lactic acid) (PLLA) and thermomechanical properties that resemble thermoplastic elastomers, including a rubbery plateau in the range of −60 to 40 °C. The triblock copolymers containing a higher percentage of THF versus CHO were more flexible, and a blend of triblock copolymers containing PLLA and poly(d‐lactic acid) (PDLA) end‐blocks resulted in a stereocomplex that further increased polymer flexibility. Besides the low cost of lactide and THF, the sustainability of this new class of triblock copolymers was also supported by their depolymerization, which was achieved by exposing the copolymers sequentially to FeCl3and ZnCl2/PEG under reactive distillation conditions.more » « less
-
null (Ed.)Biopolymer composites based on silk fibroin have shown widespread potential due to their brilliant applications in tissue engineering, medicine and bioelectronics. In our present work, biocomposite nanofilms with different special topologies were obtained through blending silk fibroin with crystallizable poly(L-lactic acid) (PLLA) at various mixture rates using a stirring-reflux condensation blending method. The microstructure, phase components, and miscibility of the blended films were studied through thermal analysis in combination with Fourier-transform infrared spectroscopy and Raman analysis. X-ray diffraction and scanning electron microscope were also used for advanced structural analysis. Furthermore, their conformation transition, interaction mechanism, and thermal stability were also discussed. The results showed that the hydrogen bonds and hydrophobic interactions existed between silk fibroin (SF) and PLLA polymer chains in the blended films. The secondary structures of silk fibroin and phase components of PLLA in composites vary at different ratios of silk to PLLA. The β-sheet content increased with the increase of the silk fibroin content, while the glass transition temperature was raised mainly due to the rigid amorphous phase presence in the blended system. This results in an increase in thermal stability in blended films compared to the pure silk fibroin films. This study provided detailed insights into the influence of synthetic polymer phases (crystalline, rigid amorphous, and mobile amorphous) on protein secondary structures through blending, which has direct applications on the design and fabrication of novel protein–synthetic polymer composites for the biomedical and green chemistry fields.more » « less
An official website of the United States government
