We report experimental constraints on the melting curve of potassium chloride (KCl) between 3.2 and 9 GPa from in situ ionic conduction measurements using a multi-anvil apparatus. On the basis of concurrent measurements of KCl and sodium chloride (NaCl) at 1 bar using the differential thermal analysis (DTA) method and Pt sphere marker, we show that the peak rate of increase in ionic current with temperature upon heating coincides with latent heat ledge and fall of Pt sphere, thus establishing the criterion for melting detection from ionic conduction measurements. Applying this criterion to high pressures, we found that the melting point of KCl rose steeply with increasing pressure to exceed 2443 ± 100 K at 9 GPa. Fitting the results of this study together with existing data at pressures below 4 GPa and above 20 GPa, we obtained the Simon’s melting equation for KCl in the simple cubic B2 structure between 1.8 and 50 GPa: T m = 1323 ( P − 1.87 2.2 ( 1 ) + 1 ) 1 2.7 ( 1 ) , where T is in K and P is in GPa. Starting at 1 bar, the melting point of KCl increases at an average rate of ~150 K/GPa to cross that of Pt near 9 GPa. The highly refractory nature of KCl makes it a sensitive pressure calibrant for the large-volume pressure at moderate pressures and a potential sample container for experiments at moderate pressures and very high temperatures.
more »
« less
This content will become publicly available on October 1, 2026
High pressure suppresses the laser-induced nucleation of supersaturated aqueous potassium chloride solutions
We report the suppression of nucleation in the nonphotochemical laser-induced nucleation of supersaturated aqueous potassium chloride solutions when the system pressure is above ambient pressure. The crystal yield at 51.7 bar is reduced to 5% of its value at 1 bar, and the crystal number dependence on pressure fits well to a semiempirical model based on the impurity-heating mechanism and the adiabatic compression of an ideal gas nanobubble. Our results complement recent findings by Barber and Alexander [] using high-speed imaging of bubbles preceding the observation of cesium chloride crystals. Together, these two studies provide compelling evidence for the impurity-heating mechanism.
more »
« less
- PAR ID:
- 10645212
- Publisher / Repository:
- Physical Review Journals
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 7
- Issue:
- 4
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The crystallization of complex oxide thin films on amorphous substrates presents a significant challenge because of the lack of long-range order in these substrates and the subsequent difficulty in controlling crystal growth. Nanocrystals with similar crystal structure have the potential to serve as nucleation sites for crystallization and can facilitate this integration. Isolated nanocrystals of strontium titanate (SrTiO3) can be produced on amorphous SiO2 surfaces through crystallization and ripening of initially amorphous layers of SrTiO3. The resulting SrTiO3 nanocrystals exhibit characteristic lateral radii ranging from tens to hundreds of nm and a consistent average height of 1–2 nm across this range. The area density and mean radii of the nanocrystals can be selected by adjusting the deposition and heating parameters, including the amount of deposited SrTiO3 and the heating duration. The heating-time dependence of the area density and mean radii of the nanocrystals is consistent with predictions based on Ostwald ripening kinetics. The selection of these parameters facilitates the use of SrTiO3 nanocrystals as nucleation sites to crystallize the subsequently deposited layer.more » « less
-
This paper describes the effects of laser pulse rate and solution flow rate on the determination of lithium at high pressure for water and 2.5% sodium chloride solutions using laser-induced breakdown spectroscopy (LIBS). Preliminary studies were performed with 0–40 mg L −1 Li solutions, at ambient pressure and at 210 bar, and in static and flowing (6 mL · min −1 ) regimes, for a combination of four different measurement conditions. The sensitivity of calibration curves depended on the pressure and the flow rate, as well as the laser pulse rate. The sensitivity of the calibration curve increased about 10% and 18% when the pressure was changed from 1 to 210 bar for static and flowing conditions, respectively. However, an effect of flow rate at high pressure for both 2 and 10 Hz laser pulse rates was observed. At ambient pressure, the effect of flow rate was negligible, as the sensitivity of the calibration curve decreased around 2%, while at high pressure the sensitivity increased around 4% when measurements were performed in a flow regime. Therefore, it seems there is a synergistic effect between pressure and flow rate, as the sensitivity increases significantly when both changes are considered. When the pulse rate is changed from 2 to 10 Hz, the sensitivity increases 26–31%, depending on the pressure and flow conditions. For lithium detection limit studies, performed with a laser pulse energy of 2.5 mJ, repetition rate of 10 Hz, gate delay of 500 ns, gate width of 1000 ns, and 1000 accumulations, a value around 40 µg L −1 was achieved for Li solutions in pure water for all four measurement conditions, while a detection limit of about 92 µg L −1 was determined for Li in 2.5% sodium chloride solutions, when high pressure and flowing conditions were employed. The results obtained in the present work demonstrate that LIBS is a powerful tool for the determination of Li in deep ocean conditions such as those found around hydrothermal vent systems.more » « less
-
The two-step nucleation (TSN) theory and crystal structure prediction (CSP) techniques are two disjointed yet popular methods to predict nucleation rate and crystal structure, respectively. The TSN theory is a well-established mechanism to describe the nucleation of a wide range of crystalline materials in different solvents. However, it has never been expanded to predict the crystal structure or polymorphism. On the contrary, the existing CSP techniques only empirically account for the solvent effects. As a result, the TSN theory and CSP techniques continue to evolve as separate methods to predict two essential attributes of nucleation – rate and structure. Here we bridge this gap and show for the first time how a crystal structure is formed within the framework of TSN theory. A sequential desolvation mechanism is proposed in TSN, where the first step involves partial desolvation to form dense clusters followed by selective desolvation of functional groups directing the formation of crystal structure. We investigate the effect of the specific interaction on the degree of solvation around different functional groups of glutamic acid molecules using molecular simulations. The simulated energy landscape and activation barriers at increasing supersaturations suggest sequential and selective desolvation. We validate computationally and experimentally that the crystal structure formation and polymorph selection are due to a previously unrecognized consequence of supersaturation-driven asymmetric desolvation of molecules.more » « less
-
Experimental techniques, such as cryo-electron microscopy, require biological samples to be recovered at cryogenic temperatures ( T ≈ 100 K) with water being in an amorphous ice state. However, (bulk) water can exist in two amorphous ices at P < 1 GPa, low-density amorphous (LDA) ice at low pressures and high-density amorphous ice (HDA) at high pressures; HDA is ≈20–25% denser than LDA. While fast/plunge cooling at 1 bar brings the sample into LDA, high-pressure cooling (HPC), at sufficiently high pressure, produces HDA. HDA can also be produced by isothermal compression of LDA at cryogenic temperatures. Here, we perform classical molecular dynamics simulations to study the effects of LDA, HDA, and the LDA–HDA transformation on the structure and hydration of a small peptide, polyalanine. We follow thermodynamic paths corresponding to (i) fast/plunge cooling at 1 bar, (ii) HPC at P = 400 MPa, and (iii) compression/decompression cycles at T = 80 K. While process (i) produced LDA in the system, path (iii) produces HDA. Interestingly, the amorphous ice produced in process (ii) is an intermediate amorphous ice (IA) with properties that fall in-between those of LDA and HDA. Remarkably, the structural changes in polyalanine are negligible at all conditions studied (0–2000 MPa, 80–300 K) even when water changes among the low and high-density liquid states as well as the amorphous solids LDA, IA, and HDA. The similarities and differences in the hydration of polyalanine vitrified in LDA, IA, and HDA are described. Since the studied thermodynamic paths are suitable for the cryopreservation of biomolecules, we also study the structure and hydration of polyalanine along isobaric and isochoric heating paths, which can be followed experimentally for the recovery of cryopreserved samples. Upon heating, the structure of polyalanine remains practically unchanged. We conclude with a brief discussion of the practical advantages of (a) using HDA and IA as a cryoprotectant environment (as opposed to LDA), and (b) the use of isochoric heating as a recovery process (as opposed to isobaric heating).more » « less
An official website of the United States government
