Abstract Advances in machine learning (ML) have led to applications in safety‐critical domains, including security, defense, and healthcare. These ML models are confronted with dynamically changing and actively hostile conditions characteristic of real‐world applications, requiring systems incorporating ML to be reliable and resilient. Many studies propose techniques to improve the robustness of ML algorithms. However, fewer consider quantitative techniques to assess changes in the reliability and resilience of these systems over time. To address this gap, this study demonstrates how to collect relevant data during the training and testing of ML suitable for the application of software reliability, with and without covariates, and resilience models and the subsequent interpretation of these analyses. The proposed approach promotes quantitative risk assessment of ML technologies, providing the ability to track and predict degradation and improvement in the ML model performance and assisting ML and system engineers with an objective approach to compare the relative effectiveness of alternative training and testing methods. The approach is illustrated in the context of an image recognition model, which is subjected to two generative adversarial attacks and then iteratively retrained to improve the system's performance. Our results indicate that software reliability models incorporating covariates characterized the misclassification discovery process more accurately than models without covariates. Moreover, the resilience model based on multiple linear regression incorporating interactions between covariates tracks and predicts degradation and recovery of performance best. Thus, software reliability and resilience models offer rigorous quantitative assurance methods for ML‐enabled systems and processes.
more »
« less
A Survey on Data-Driven Approaches for Reliability, Robustness, and Energy Efficiency in Wireless Body Area Networks
Wireless Body Area Networks (WBANs) are pivotal in health care and wearable technologies, enabling seamless communication between miniature sensors and devices on or within the human body. These biosensors capture critical physiological parameters, ranging from body temperature and blood oxygen levels to real-time electrocardiogram readings. However, WBANs face significant challenges during and after deployment, including energy conservation, security, reliability, and failure vulnerability. Sensor nodes, which are often battery-operated, expend considerable energy during sensing and transmission due to inherent spatiotemporal patterns in biomedical data streams. This paper provides a comprehensive survey of data-driven approaches that address these challenges, focusing on device placement and routing, sampling rate calibration, and the application of machine learning (ML) and statistical learning techniques to enhance network performance. Additionally, we validate three existing models (statistical, ML, and coding-based models) using two real datasets, namely the MIMIC clinical database and biomarkers collected from six subjects with a prototype biosensing device developed by our team. Our findings offer insights into strategies for optimizing energy efficiency while ensuring security and reliability in WBANs. We conclude by outlining future directions to leverage approaches to meet the evolving demands of healthcare applications.
more »
« less
- Award ID(s):
- 2316003
- PAR ID:
- 10645364
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 24
- Issue:
- 20
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 6531
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Balzarotti, Davide; Xu, Wenyuan (Ed.)On-device ML is increasingly used in different applications. It brings convenience to offline tasks and avoids sending user-private data through the network. On-device ML models are valuable and may suffer from model extraction attacks from different categories. Existing studies lack a deep understanding of on-device ML model security, which creates a gap between research and practice. This paper provides a systematization approach to classify existing model extraction attacks and defenses based on different threat models. We evaluated well known research projects from existing work with real-world ML models, and discussed their reproducibility, computation complexity, and power consumption. We identified the challenges for research projects in wide adoption in practice. We also provided directions for future research in ML model extraction security.more » « less
-
Sensor-powered devices offer safe global connections; cloud scalability and flexibility, and new business value driven by data. The constraints that have historically obstructed major innovations in technology can be addressed by advancements in Artificial Intelligence (AI) and Machine Learning (ML), cloud, quantum computing, and the ubiquitous availability of data. Edge AI (Edge Artificial Intelligence) refers to the deployment of AI applications on the edge device near the data source rather than in a cloud computing environment. Although edge data has been utilized to make inferences in real-time through predictive models, real-time machine learning has not yet been fully adopted. Real-time machine learning utilizes real-time data to learn on the go, which helps in faster and more accurate real-time predictions and eliminates the need to store data eradicating privacy issues. In this article, we present the practical prospect of developing a physical threat detection system using real-time edge data from security cameras/sensors to improve the accuracy, efficiency, reliability, security, and privacy of the real-time inference model.more » « less
-
Abstract This review paper examines the application and challenges of machine learning (ML) in intelligent welding processes within the automotive industry, focusing on resistance spot welding (RSW) and laser welding. RSW is predominant in body-in-white assembly, while laser welding is critical for electric vehicle battery packs due to its precision and compatibility with dissimilar materials. The paper categorizes ML applications into three key areas: sensing, in-process decision-making, and post-process optimization. It reviews supervised learning models for defect detection and weld quality prediction, unsupervised learning for feature extraction and data clustering, and emerging generalizable ML approaches like transfer learning and federated learning that enhance adaptability across different manufacturing conditions. Additionally, the paper highlights the limitations of current ML models, particularly regarding generalizability when moving from lab environments to real-world production, and discusses the importance of adaptive learning techniques to address dynamically changing conditions. Case studies like virtual sensing, defect detection in RSW, and optimization in laser welding illustrate practical applications. The paper concludes by identifying future research directions to improve ML adaptability and robustness in high-variability manufacturing environments, aiming to bridge the gap between experimental ML models and real-world implementation in automotive welding.more » « less
-
Audio-based human activity recognition (HAR) is very popular because many human activities have unique sound signatures that can be detected using machine learning (ML) approaches. These audio-based ML HAR pipelines often use common featurization techniques, such as extracting various statistical and spectral features by converting time domain signals to the frequency domain (using an FFT) and using them to train ML models. Some of these approaches also claim privacy benefits by preventing the identification of human speech. However, recent deep learning-based automatic speech recognition (ASR) models pose new privacy challenges to these featurization techniques. In this paper, we systematically evaluate various featurization approaches for audio data, assessing their privacy risks through metrics like speech intelligibility (PER and WER) while considering the utility tradeoff in terms of ML-based activity recognition accuracy. Our findings reveal the susceptibility of these approaches to speech content recovery when exposed to recent ASR models, especially under re-tuning or retraining conditions. Notably, fine-tuned ASR models achieved an average Phoneme Error Rate (PER) of 39.99% and Word Error Rate (WER) of 44.43% in speech recognition for these approaches. To overcome these privacy concerns, we propose Kirigami, a lightweight machine learning-based audio speech filter that removes human speech segments reducing the efficacy of ASR models (70.48% PER and 101.40% WER) while also maintaining HAR accuracy (76.0% accuracy). We show that Kirigami can be implemented on common edge microcontrollers with limited computational capabilities and memory, providing a path to deployment on a variety of IoT devices. Finally, we conducted a real-world user study and showed the robustness of Kirigami on a laptop and an ARM Cortex-M4F microcontroller under three different background noises.more » « less
An official website of the United States government

