skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 28, 2026

Title: Self-consistent equations for nonempirical tight-binding theory
A new reference state for density functional theory (DFT), termed the independent atom ansatz, is introduced in this work. This ansatz allows for the formally exact representation of electron density in terms of atom-localized orbitals. Self-consistent equations for such states are derived in general and asymptotic forms. The resultant total energy functional is found to closely resemble tight-binding theory. The independent atom ansatz facilitates partial cancellation of inter-atomic electron–electron and nucleus–electron interactions, which allows for the derivation of analytical tight-binding Hamiltonian matrix elements in a weak interaction limit. The formalism provides energy decomposition and charge analyses at no additional cost and links tight-binding, localized orbital, and electronegativity concepts. Numerical accuracy of the total energy functional has been previously reported for hydrogenic systems [Mironenko, J. Phys. Chem. A 127, 7836 (2023)] and is demonstrated here for He2, Li2, Be2, B2, N2, O2, F2, and Ne2. The method accurately reproduces the shapes of potential energy curves, capturing large-basis CCSD(T)-level bond lengths and bond dissociation energies for N2, O2, and F2 using only a minimal basis set. It outperforms both CCSD(T) and some mainstream approximate restricted Kohn–Sham DFT functionals in describing bond dissociation behavior away from equilibrium geometries.  more » « less
Award ID(s):
2154781
PAR ID:
10645380
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
163
Issue:
16
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cesiated complexes of the aliphatic amino acids (Gly, Ala, hAla, Val, Leu, and Ile) were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light from a free-electron laser (FEL). To identify structures, the experimental spectra were compared to linear spectra calculated at the B3LYP-GD3BJ/def2-TZVP level of theory. Relative energies at 0 and 298 K for various possible conformers of all complexes were calculated at B3LYP, B3LYP-GD3BJ, and MP2(full) levels using the def2-TZVP basis set. Spectral comparison for all complexes indicates that the dominant conformation has the cesium cation binding to the carbonyl and hydroxyl oxygens, [CO,OH]. This conclusion contrasts with previous work for Cs+(Gly), which suggested that the [CO] binding motif was prevalent. This dichotomy is explored theoretically in detail using coupled-cluster calculations with single, double, and perturbative triple excitations, CCSD(T), as well as advanced density functional theory (DFT) approaches. The comparisons show that the [CO,OH] – [CO] double-well potential found for most DFT approaches disappears at the higher level of theory with only the [CO,OH] well remaining. An exploration of this effect indicates that electron correlation is critically important and that DFT approaches incorrectly handle the internal hydrogen bonding in these molecules, thereby over-delocalizing the charges on the amino acid ligands. 
    more » « less
  2. Kohn–Sham (KS) inversion, that is, the finding of the exact KS potential for a given density, is difficult in localized basis sets. We study the precision and reliability of several inversion schemes, finding estimates of density-driven errors at a useful level of accuracy. In typical cases of substantial density-driven errors, Hartree–Fock density functional theory (HF-DFT) is almost as accurate as DFT evaluated on CCSD(T) densities. A simple approximation in practical HF-DFT also makes errors much smaller than the density-driven errors being calculated. Two paradigm examples, stretched NaCl and the HO·Cl– radical, illustrate just how accurate HF-DFT is. 
    more » « less
  3. In density-functional theory, the exchange–correlation (XC) energy can be defined exactly through the coupling-constant (λ) averaged XC hole n̄xc(r,r′), representing the probability depletion of finding an electron at r′ due to an electron at r. Accurate knowledge of n̄xc(r,r′) has been crucial for developing XC energy density-functional approximations and understanding their performance for molecules and materials. However, there are very few systems for which accurate XC holes have been calculated since this requires evaluating the one- and two-particle reduced density matrices for a reference wave function over a range of λ while the electron density remains fixed at the physical (λ = 1) density. Although the coupled-cluster singles and doubles (CCSD) method can yield exact results for a two-electron system in the complete basis set limit, it cannot capture the electron–electron cusp using finite basis sets. Focusing on Hooke’s atom as a two-electron model system for which certain analytic solutions are known, we examine the effect of this cusp error on the XC hole calculated using CCSD. The Lieb functional is calculated at a range of coupling constants to determine the λ-integrated XC hole. Our results indicate that, for Hooke’s atoms, the error introduced by the description of the electron–electron cusp using Gaussian basis sets at the CCSD level is negligible compared to the basis set incompleteness error. The system-, angle-, and coupling-constant-averaged XC holes are also calculated and provide a benchmark against which the Perdew–Burke–Ernzerhof and local density approximation XC hole models are assessed. 
    more » « less
  4. High-level ab initio CCSD(T) and spin-orbit icMRCI+Q calculations were used to predict potential energy curves (PECs) for the lowest-lying states of ZrO, ZrS, HfO, and HfS. The prediction of the ground state is basis set dependent at the icMRCI+Q level for ZrO and ZrS due to the small singlet-triplet splitting between the lowest 1Σ+ and 3Δ states. CCSD(T) with a spin orbit correction predicted the 1Σ+ ground state in agreement with experiment. New all-electron basis sets were developed for Hf to improve the results over those predicted by use of effective core potentials (ECPs) that subsume the 4f electrons into the definition of the core. The use of the new DK-4f basis sets rather than ECPs became more important for HfO and HfS where there is a lack of a good core-valence separation. icMRCI+Q, CCSD(T), and DFT calculations for the spectroscopic parameters of ZrO, ZrS, HfO, and HfS were benchmarked with available experimental data. Bond dissociation energies (BDEs) of these four systems were calculated at the Feller-Peterson-Dixon (FPD) level to be 762.1 (ZrO), 543.5 (ZrS), 803.8 (HfO), and 575.1 kJ/mol (HfS), in excellent agreement with experiment. The HfS BDE was remeasured using the R3PI method, providing an updated experimental measurement of D0(HfS) = 5.978 ± 0.002 eV = 576.8 ± 0.2 kJ/mol. This experimental value, combined with experimental measurements of the ionization energies of Hf and HfS, gives the cationic BDE of D0(Hf+-S) = 5.124 ± 0.002 eV = 494.4 ± 0.2 kJ/mol. 
    more » « less
  5. Abstract This study explores open-shell biradical and polyradical molecular compounds based on extended multireference (MR) methods (MR-configuration interaction with singles and doubles (CISD) and MR-averaged quadratic coupled cluster (AQCC) approach) using the numbers of unpaired densitiesNU. These results were used to guide the analysis of the fractional occupation number weighted density (FOD) calculated within the finite temperature (FT) density functional theory (DFT) approach. As critical test examples, the dissociation of carbon–carbon (CC) single, double and triple bonds and a benchmark set of polycyclic aromatic hydrocarbons (PAHs) have been chosen. By examining single, double, and triple bond dissociations, we demonstrate the utility and accuracy but also limitations of the FOD analysis for describing these dissociation processes. In significant extension of previous work (Phys Chem Chem Phys 25: 27380–27393), the assessment of FOD applications for different classes of DFT functionals was performed examining the range-separated functionals ωB97XD, ωB97M-V, CAM-B3LYP, LC-ωPBE, and MN12-SX, the hybrid (M06-2X) functional and the double hybrid (B2P-LYP) functional. In all cases, strong correlations betweenNFODandNUvalues are found. The major task was to develop a new linear regression formula for range-separated functionals allowing a convenient determination of the optimal electronic temperatureTelfor the FT-DFT calculation. We also established an optimal temperature for the semiempirical extended tight-binding GFN2-xTB method. These findings significantly broaden the applicability of FOD analysis across various DFT functionals and semiempirical methods. 
    more » « less