skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 18, 2026

Title: Quantum LDPC Codes with Enhanced Error-Floor Performance under Min-Sum Decoding
Quantum low-density parity-check codes are a promising approach to fault-tolerant quantum computation, offering potential advantages in rate and decoding efficiency. Quantum Margulis codes are a new class of QLDPC codes derived from Margulis’ classical LDPC construction via the two-block group algebra framework. We show that quantum Margulis codes, unlike bivariate bicycle codes, which require ordered statistics decoding for effective error correction, can be efficiently decoded using a standard min-sum decoder with linear complexity, when decoded under depolarizing noise. This is attributed to their Tanner graph structure, which does not exhibit group symmetry, thereby mitigating the well-known problem of error degeneracy in QLDPC decoding. To further enhance performance, we propose an algorithm for constructing 2BGA codes with controlled girth, ensuring a minimum girth of 6 or 8, and use it to generate several quantum Margulis codes of length 240 and 642. We validate our approach through numerical simulations, demonstrating that quantum Margulis codes behave significantly better than BB codes in the error floor region, under min-sum decoding.  more » « less
Award ID(s):
2420424
PAR ID:
10645536
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Iterative decoders for finite length quantum low-density parity-check (QLDPC) codes are attractive because their hardware complexity scales only linearly with the number of physical qubits. However, they are impacted by short cycles, detrimental graphical configurations known as trapping sets (TSs) present in a code graph as well as symmetric degeneracy of errors. These factors significantly degrade the decoder decoding probability performance and cause so-called error floor. In this paper, we establish a systematic methodology by which one can identify and classify quantum trapping sets (QTSs) according to their topological structure and decoder used. The conventional definition of a TS from classical error correction is generalized to address the syndrome decoding scenario for QLDPC codes. We show that the knowledge of QTSs can be used to design better QLDPC codes and decoders. Frame error rate improvements of two orders of magnitude in the error floor regime are demonstrated for some practical finite-length QLDPC codes without requiring any post-processing. 
    more » « less
  2. Abstract In practical quantum error correction implementations, the measurement of syndrome information is an unreliable step—typically modeled as a binary measurement outcome flipped with some probability. However, the measured syndrome is in fact a discretized value of the continuous voltage or current values obtained in the physical implementation of the syndrome extraction. In this paper, we use this “soft” or analog information to benefit iterative decoders for decoding quantum low-density parity-check (QLDPC) codes. Syndrome-based iterative belief propagation decoders are modified to utilize the soft syndrome to correct both data and syndrome errors simultaneously. We demonstrate the advantages of the proposed scheme not only in terms of comparison of thresholds and logical error rates for quasi-cyclic lifted-product QLDPC code families but also with faster convergence of iterative decoders. Additionally, we derive hardware (FPGA) architectures of these soft syndrome decoders and obtain similar performance in terms of error correction to the ideal models even with reduced precision in the soft information. The total latency of the hardware architectures is about 600 ns (for the QLDPC codes considered) in a 20 nm CMOS process FPGA device, and the area overhead is almost constant—less than 50% compared to min-sum decoders with noisy syndromes. 
    more » « less
  3. Quantum low-density parity-check (QLDPC) codes have emerged as a promising technique for quantum error correction. A variety of decoders have been proposed for QLDPC codes and many utilize belief propagation (BP) decoding in some fashion. However, the use of BP decoding for degenerate QLDPC codes is known to have issues with convergence. These issues are typically attributed to short cycles in the Tanner graph and error patterns with the same syndrome due to code degeneracy. In this work, we propose a decoder for QLDPC codes based on BP guided decimation (BPGD), which has been previously studied for constraint satisfaction and lossy compression problems. This decimation process is applicable to both binary and quaternary BP and it involves sequentially freezing the value of the most reliable qubits to encourage BP convergence. We find that BPGD significantly reduces the BP failure rate due to non-convergence, achieving performance on par with BP with ordered statistics decoding and BP with stabilizer inactivation, without the need to solve systems of linear equations. To explore how and why BPGD improves performance, we discuss several interpretations of BPGD and their connection to BP syndrome decoding. 
    more » « less
  4. Quantum error correction has recently been shown to benefit greatly from specific physical encodings of the code qubits. In particular, several researchers have considered the individual code qubits being encoded with the continuous variable GottesmanKitaev-Preskill (GKP) code, and then imposed an outer discrete-variable code such as the surface code on these GKP qubits. Under such a concatenation scheme, the analog information from the inner GKP error correction improves the noise threshold of the outer code. However, the surface code has vanishing rate and demands a lot of resources with growing distance. In this work, we concatenate the GKP code with generic quantum low-density parity-check (QLDPC) codes and demonstrate a natural way to exploit the GKP analog information in iterative decoding algorithms. We first show the noise thresholds for two lifted product QLDPC code families, and then show the improvements of noise thresholds when the iterative decoder – a hardware-friendly min-sum algorithm (MSA) – utilizes the GKP analog information. We also show that, when the GKP analog information is combined with a sequential update schedule for MSA, the scheme surpasses the well-known CSS Hamming bound for these code families. Furthermore, we observe that the GKP analog information helps the iterative decoder in escaping harmful trapping sets in the Tanner graph of the QLDPC code, thereby eliminating or significantly lowering the error floor of the logical error rate curves. Finally, we discuss new fundamental and practical questions that arise from this work on channel capacity under GKP analog information, and on improving decoder design and analysis. 
    more » « less
  5. In this paper, we propose a novel message-passing decoding approach that leverages the degeneracy of quantum low-density parity-check codes to enhance decoding performance, eliminating the need for serial scheduling or post-processing. Our focus is on two-block Calderbank-Shor-Steane (CSS) codes, which are composed of symmetric stabilizers that hinder the performance of conventional iterative decoders with uniform update rules. Specifically, our analysis shows that, under the isolation assumption, the min-sum decoder fails to converge when constant-weight errors are applied to symmetric stabilizers, as variable-to-check messages oscillate in every iteration. To address this, we introduce a decoding technique that exploits this oscillatory property by applying distinct update rules: variable nodes in one block utilize messages from previous iterations, while those in the other block are updated conventionally. Logical error-rate results demonstrate that the proposed decoder significantly outperforms the normalized min-sum decoder and achieves competitive performance with belief propagation enhanced by order-zero ordered statistics decoding, all while maintaining linear complexity in the code’s block length. 
    more » « less