skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 5, 2026

Title: Spatial scale dependence of fault physical parameters and its implications for the analysis of earthquake dynamics from the lab to fault systems
An accurate assessment of seismic hazard requires a combination of earthquake physics and statistical analysis. Because of the limitations in the investigation of the seismogenic sources and of the short temporal intervals covered by earthquake catalogs, laboratory experiments have played a crucial role in improving our understanding of earthquake phenomena. However, differences exist between acoustic emissions in the lab, events in small, regulated systems (e.g., mines) and natural seismicity. One of the most pressing issues concerns the role of mechanical parameters and how they affect seismic activity across boundary conditions and spatial-temporal scales. Here, we focus on fault friction. There is evidence inferred from geodesy, computational simulations and seismological investigations that most large faults are weak and characterized by very low static friction coefficients which are inconsistent with those of smaller faults and laboratory experiments. We support the hypothesis that static friction decreases with fault size due to the presence of fabrics, roughness, structural asperities and network geometry. We also model its scaling behavior as dependent on a few physical properties (e.g., fault fractal dimension). Conversely, dynamic coefficients are not affected by the spatial scale. Mathematical derivations are based on the hypothesis that earthquake onset results from fracture instability controlled by the extremes of fault shear strength. We validate this using a simple model for earthquake occurrence rooted in fracture mechanics, which reproduces key features of major seismicity (i.e., interevent time distribution, clustering and frequency-size relationship).  more » « less
Award ID(s):
2109831
PAR ID:
10645627
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Earth and planetary science letters
ISSN:
0012-821X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We develop an earthquake simulator to study the partitioning of seismic/aseismic slip and dynamics of Earthquakes on a Heterogeneous strike‐slip Fault (HFQsim) using a generalized model of a discrete fault governed by static/dynamic friction and creep in an elastic half‐space. Previous versions of the simulator were shown to produce various realistic seismicity patterns (e.g., frequency‐magnitude event statistics, hypocenter and slip distributions, temporal occurrence) using friction levels and creep properties that vary in space but are fixed in time. The new simulator incorporates frictional heat generation by earthquake slip leading to temperature rises, subsequent diffusion cooling into the half space, and time‐dependent creep on the fault. The model assumes a power law dependence of creep velocity on the local shear stress, with temperature‐dependent coefficients based on the Arrhenius equation. Temperature rises due to seismic slip produce increased aseismic slip, which can lead to further stress concentrations, aftershocks, and heat generation in a feedback loop. The partitioning of seismic/aseismic slip and space‐time evolution of seismicity are strongly affected by the temperature changes on the fault. The results are also affected significantly by the difference between the static and kinetic friction levels. The model produces realistic spatio‐temporal distribution of seismicity, transient aseismic slip patterns, mainshock‐aftershock sequences, and a bimodal distribution of earthquakes with background and clustered events similar to observations. The HFQsim may be used to clarify relations between fault properties and different features of seismicity and aseismic slip, and to improve the understanding of failure patterns preceding large earthquakes. 
    more » « less
  2. null (Ed.)
    SUMMARY Earthquake ruptures are generally considered to be cracks that propagate as fracture or frictional slip on pre-existing faults. Crack models have been used to describe the spatial distribution of fault offset and the associated static stress changes along a fault, and have implications for friction evolution and the underlying physics of rupture processes. However, field measurements that could help refine idealized crack models are rare. Here, we describe large-scale laboratory earthquake experiments, where all rupture processes were contained within a 3-m long saw-cut granite fault, and we propose an analytical crack model that fits our measurements. Similar to natural earthquakes, laboratory measurements show coseismic slip that gradually tapers near the rupture tips. Measured stress changes show roughly constant stress drop in the centre of the ruptured region, a maximum stress increase near the rupture tips and a smooth transition in between, in a region we describe as the earthquake arrest zone. The proposed model generalizes the widely used elliptical crack model by adding gradually tapered slip at the ends of the rupture. Different from the cohesive zone described by fracture mechanics, we propose that the transition in stress changes and the corresponding linear taper observed in the earthquake arrest zone are the result of rupture termination conditions primarily controlled by the initial stress distribution. It is the heterogeneous initial stress distribution that controls the arrest of laboratory earthquakes, and the features of static stress changes. We also performed dynamic rupture simulations that confirm how arrest conditions can affect slip taper and static stress changes. If applicable to larger natural earthquakes, this distinction between an earthquake arrest zone (that depends on stress conditions) and a cohesive zone (that depends primarily on strength evolution) has important implications for how seismic observations of earthquake fracture energy should be interpreted. 
    more » « less
  3. Faults are usually surrounded by damage zones associated with localized deformation. Here we use fully dynamic earthquake cycle simulations to quantify the behaviors of earthquakes in fault damage zones. We show that fault damage zones can make a significant contribution to the spatial and temporal seismicity distribution. Fault stress heterogeneities generated by fault zone waves persist over multiple earthquake cycles that, in turn, produce small earthquakes that are absent in homogeneous simulations with the same friction conditions. Shallow fault zones can produce a bimodal depth distribution of earthquakes with clustering of seismicity at both shallower and deeper depths. Fault zone healing during the interseismic period also promotes the penetration of aseismic slip into the locked region and reduces the sizes of fault asperities that host earthquakes. Hence, small and moderate subsurface earthquakes with irregular recurrence intervals are commonly observed in immature fault zone simulations with interseismic healing. To link our simulation results to geological observations, we will use simulated fault slip at different depths to infer the timing and recurrence intervals of earthquakes and discuss how such measurements can affect our understanding of earthquake behaviors. We will also show that the maturity and material properties of fault damage zones have strong influence on whether long-term earthquake characteristics are represented by single events. 
    more » « less
  4. Abstract Geological heterogeneity is abundant in crustal fault zones; however, its role in controlling the mechanical behaviour of faults is poorly constrained. Here, we present laboratory friction experiments on laterally heterogeneous faults, with patches of strong, rate-weakening quartz gouge and weak, rate-strengthening clay gouge. The experiments show that the heterogeneity leads to a significant reduction in strength and frictional stability in comparison to compositionally identical faults with homogeneously mixed gouges. We identify a combination of weakening effects, including smearing of the weak clay; differential compaction of the two gouges redistributing normal stress; and shear localization producing stress concentrations in the strong quartz patches. The results demonstrate that geological heterogeneity and its evolution can have pronounced effects on fault strength and stability and, by extension, on the occurrence of slow-slip transients versus earthquake ruptures and the characteristics of the resulting events, and should be further studied in lab experiments and earthquake source modelling. 
    more » « less
  5. ABSTRACT Fault stepovers are prime examples of geometric complexity in natural fault zones that may affect seismic hazard by determining whether an earthquake rupture continues propagating or abruptly stops. However, the long-term pattern of seismicity near-fault stepovers and underlying mechanisms of rupture jumping in the context of earthquake cycles are rarely studied. Leveraging a hybrid numerical scheme combining the finite element and the spectral boundary integral methods, FEBE, we carry out fully dynamic simulations of sequences of earthquakes and aseismic slip for both compressive and tensile stepovers with off-fault plasticity. We consider a rate-and-state friction law for the fault friction and pressure-sensitive Drucker–Prager plasticity for the off-fault bulk response. We observe that the accumulation of plastic deformation, an indication of off-fault damage, is significantly different in the two cases, with more plastic deformation projected in the overlapping region for the tensile stepover. The seismic pattern for a tensile stepover is more complex than for a compressive stepover, and incorporating plasticity also increases complexity, relative to the elastic case. A tensile stepover with off-fault plasticity shows rupture segmentation, temporal clustering, and frequent rupture jumping from one fault to another. These results shed light on possible mechanisms of rupture jumping in fault stepovers as well as the long-term evolution of the fault zone. 
    more » « less