skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating ultrafast transient absorption spectra from first principles using a time-dependent configuration interaction probe
Transient absorption spectroscopy (TAS) is among the most common ultrafast photochemical experiments, but its interpretation remains challenging. In this work, we present an efficient and robust method for simulating TAS signals from first principles. Excited-state absorption and stimulated emission (SE) signals are computed using time-dependent complete active space configuration interaction (TD-CASCI) simulations, leveraging the robustness of time-domain simulation to minimize electronic structure failure. We demonstrate our approach by simulating the TAS signal of 1′-hydroxy-2′-acetonapthone (HAN) from ab initio multiple spawning nonadiabatic molecular dynamics simulations. Our results are compared to gas-phase TAS data recorded from both jet-cooled (T ∼ 40 K) and hot (∼403 K) molecules via cavity-enhanced TAS (CE-TAS). Decomposition of the computed spectrum allows us to assign a rise in the SE signal to excited-state proton transfer and the ultimate decay of the signal to relaxation through a twisted conical intersection. The total cost of computing the observable signal (∼1700 graphics processing unit hours for ∼4 ns of electron dynamics) was markedly less than that of performing the ab initio multiple spawning calculations used to compute the underlying nonadiabatic dynamics.  more » « less
Award ID(s):
2102319
PAR ID:
10645682
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Journal of Chemical Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
4
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Salicylideneaniline (SA) is an archetypal system for excited-state intramolecular proton transfer (ESIPT) in non-planar systems. Multiple channels for relaxation involving both the keto and enol forms have been proposed after excitation to S1 with near-UV light. Here, we present transient absorption measurements of hot gas-phase SA, jet-cooled SA, and SA in Ar clusters using cavity-enhanced transient absorption spectroscopy (CE-TAS). Assignment of the spectra is aided by simulated TAS spectra, computed by applying time-dependent complete active space configuration interaction (TD-CASCI) to structures drawn from nonadiabatic molecular dynamics simulations. We find prompt ESIPT in all conditions followed by the rapid generation of the trans keto metastable photochrome state and fluorescent keto state in parallel. Increasing the internal energy increases the photochrome yield and decreases the fluorescent yield and fluorescent state lifetime observed in TAS. In Ar clusters, internal conversion of SA is severely hindered, but the photochrome yield is unchanged. Taken together, these results are consistent with the photochrome being produced via the vibrationally excited keto population after ESIPT. 
    more » « less
  2. Photoluminescence (PL) is one of the key experimental characterizations of optoelectronic materials, including conjugated polymers (CPs). In this study, a simplified model of an undoped cis-polyacetylene (cis-PA) oligomer was selected and used to explain the mechanism of photoluminescence (PL) of the CPs. Using a combination of the ab initio electronic structure and a time-dependent density matrix methodology, the photo-induced time-dependent excited state dynamics were computed. We explored the phonon-induced relaxation of the photoexcited state for a single oligomer of cis-PA. Here, the dissipative Redfield equation of the motion was used to compute the dissipative excited state dynamics of electronic degrees of freedom. This equation used the nonadiabatic couplings as parameters. The computed excited state dynamics showed that the relaxation rate of the electron is faster than the relaxation rate of the hole. The dissipative excited-state dynamics were combined with radiative recombination channels to predict the PL spectrum. The simulated results showed that the absorption and emission spectra both have a similar transition. The main result is that the computed PL spectrum demonstrates two mechanisms of light emission originating from (i) the inter-band transitions, corresponding to the same range of transition energies as the absorption spectrum and (ii) intra-band transitions not available in the absorption spectra. However, the dissipative Redfield equation of the motion was used to compute the electronic degrees of freedom of the nonadiabatic couplings, which helped to process the time propagation of the excited dynamic state. This excited dynamic state shows that the relaxation rate of the electron is faster than the relaxation rate of the hole, which can be used for improving organic semiconductor materials for photovoltaic and LED applications. 
    more » « less
  3. In this article, we review nonadiabatic molecular dynamics (NAMD) methods for modeling spin-crossover transitions. First, we discuss different representations of electronic states employed in the grid-based and direct NAMD simulations. The nature of interstate couplings in different representations is highlighted, with the main focus on nonadiabatic and spin-orbit couplings. Second, we describe three NAMD methods that have been used to simulate spin-crossover dynamics, including trajectory surface hopping, ab initio multiple spawning, and multiconfiguration time-dependent Hartree. Some aspects of employing different electronic structure methods to obtain information about potential energy surfaces and interstate couplings for NAMD simulations are also discussed. Third, representative applications of NAMD to spin crossovers in molecular systems of different sizes and complexities are highlighted. Finally, we pose several fundamental questions related to spin-dependent processes. These questions should be possible to address with future methodological developments in NAMD. 
    more » « less
  4. Abstract A unified picture of the electronic relaxation dynamics of ionized liquid water has remained elusive despite decades of study. Here, we employ sub-two-cycle visible to short-wave infrared pump-probe spectroscopy and ab initio nonadiabatic molecular dynamics simulations to reveal that the excess electron injected into the conduction band (CB) of ionized liquid water undergoes sequential relaxation to the hydrated electronsground state via an intermediate state, identified as the elusivepexcited state. The measured CB andp-electron lifetimes are 0.26 ± 0.02 ps and 62 ± 10 fs, respectively. Ab initio quantum dynamics yield similar lifetimes and furthermore reveal vibrational modes that participate in the different stages of electronic relaxation, with initial relaxation within the dense CB manifold coupled to hindered translational motions whereas subsequentp-to-srelaxation facilitated by librational and even intramolecular bending modes of water. Finally, energetic considerations suggest that a hitherto unobserved trap state resides ~0.3-eV below the CB edge of liquid water. Our results provide a detailed atomistic picture of the electronic relaxation dynamics of ionized liquid water with unprecedented time resolution. 
    more » « less
  5. Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear–electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing. A strategy is presented for calculating time-resolved vibrational and electronic absorption spectra from any initial condition. Although this strategy is general for any TDCI implementation, utilizing the NEO framework allows for the explicit inclusion of quantized nuclei, as illustrated through the calculation of vibrationally hot spectra. Time-resolved spectra produced by either vibrational or electronic Rabi oscillations capture ground-state absorption, stimulated emission, and excited-state absorption between vibronic states. This methodology provides the foundation for fully ab initio simulations of multidimensional spectroscopic experiments. 
    more » « less