Although the high efficiency of coupled lithium and saturated metakaolin in alkali-silica reaction mitigation has been documented, its influence on cement hydration remains uninvestigated. In this study, saturated metakaolin with varying degrees of saturation and its combined influence with lithium on the hydration kinetics, phase evolution, and development of microstructure and molecular structures of hydration products in the blended cement composite was investigated. The experimental and thermodynamic modeling results indicate the synergistic effect between saturated metakaolin and lithium in enhancing the hydration of cement, interaction between metakaolin and cement, incorporation of Al in the silicate chains, and precipitations of Al-rich phases. In the blended cement matrix, the dissolution of metakaolin, formation of calcium silicate hydrates with incorporated aluminum (C-(A)-S-H), and precipitation of strätlingite are improved by 19.6%, 17.6%, and 20.0%, respectively, and the formation of cubic siliceous hydrogarnet was triggered.
more »
« less
This content will become publicly available on October 1, 2026
Wellbore Integrity in Energy Applications: Precipitation Products after Reaction with Produced Water from the Permian Basin
Sealing of oil and gas production wells is done to protect overlying aquifers and the land surface from vertical migration of drilling fluids, produced water (PW), and natural gas. The integrity of the contact between the well casing and cement seal is especially important as both the steel and the cement are subject to reactions caused by exposure to very high salinity PW. The objective of this study was to identify corrosion and precipitation products that form at this contact and determine their effect on the microannular space between the two materials. Steel cylinders were embedded in Type G Portland cement to simulate a sealed wellbore. They were then exposed to simulated and PW sampled from the Permian Basin in the southwestern United States. Solid phases in the cement were identified by X-ray diffraction and electron microprobe analyses and included portlandite, a calcium silicate, and brownmillerite. Gas flow measurements were used to estimate the aperture of the microannulus between the steel surface and the cement. A decrease in the aperture with increasing reaction time was detected for all experiments. The findings suggest that exposure to PW has the potential to reduce the microannular space between the casing and the cement seal as a result of precipitation of calcium- and magnesium-carbonate as dominant phases, with the co-occurrence of sulfate and silicate minerals. These results have implications related to the long-term integrity of annular seals used to seal oil wells exposed to very high salinity PW.
more »
« less
- Award ID(s):
- 1914490
- PAR ID:
- 10645708
- Publisher / Repository:
- Mary Ann Liebert, Inc.
- Date Published:
- Journal Name:
- Environmental Engineering Science
- Volume:
- 42
- Issue:
- 10
- ISSN:
- 1557-9018
- Page Range / eLocation ID:
- 434 to 444
- Subject(s) / Keyword(s):
- energy applications precipitation products produced water wellbore integrity
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Portland cement emits bright near-infrared photoluminescence that can be excited by light wavelengths ranging from at least 500–1000 nm. The emission has a peak wavelength near 1140 nm and a width of approximately 30 nm. Its source is suggested to be small particles of silicon associated with calcium silicate phases. The luminescence peak wavelength appears independent of the cement hydration state, aggregates, and mechanical strain but increases weakly with increasing temperature. It varies slightly with the type of cement, suggesting a new non-contact method for identifying cement formulations. After a thin opaque coating is applied to a cement or concrete surface, subsequent formation of microcracks exposes the substrate’s near-infrared emission, revealing the fracture locations, pattern, and progression. This damage would escape detection in normal imaging inspections. Near-infrared luminescence imaging may therefore provide a new tool for non-destructive testing of cement-based structures.more » « less
-
Ouyang Wei (Ed.)the central United States, PW disposal occurs through deep well injection, which can increase seismic activity. The treatment of PW for use in agriculture is an alternative to current disposal practices that can also provide supplemental water in regions where limited freshwater sources can affect agricultural production. This paper assesses the potential for developing PW as a water source for agriculture in the Anadarko basin, a major oil and gas field spanning parts of Kansas, Oklahoma, Colorado, and Texas. From 2011 to 2019, assessment of state oil and gas databases indicated that PW generation in the Anadarko Basin averaged 428 million m3/yr. A technoeconomic analysis of PW treatment was combined with geographical information on PW availability and composition to assess the costs and energy requirements to recover this PW as a non-conventional water resource for agriculture. The volume of freshwater economically extractable from PW was estimated to be between 58 million m3 per year using reverse osmosis (RO) treatment only and 82 million m3 per year using a combination of RO and mechanical vapor compression to treat higher salinity waters. These volumes could meet 1–2 % and 49–70 % of the irrigation and livestock water demands in the basin, respectively. PW recovery could also modestly contribute to mitigating the decline of the Ogallala aquifer by ~2 %. RO treatment costs and energy requirements, 0.3–1.5 $/m3 and 1.01–2.65 kWh/m3, respectively, are similar to those for deep well injection. Treatment of higher salinity waters increases costs and energy requirements substantially and is likely not economically feasible in most cases. The approach presented here provides a valuable framework for assessing PW as a supplemental water source in regions facing similar challenges.more » « less
-
null (Ed.)Alkali-activated materials (AAMs) are one type of sustainable alternative for ordinary Portland cement (OPC), providing significant reductions in CO2 emissions. AAMs based on fly ash or metakaolin are found to possess good fire performance, where the binder gels crystallize and form ceramic phases on heating. However, the ambient temperature setting properties and short-term strength development of select low-calcium AAMs are unfavorable, requiring the optimization of the mix design and a re-evaluation of the chemical, mechanical and physical properties at elevated temperatures (i.e., fire conditions). In this investigation, the influence of calcium hydroxide on the thermal evolution of alkali-activated metakaolin has been assessed, where gel crystallization and restructuring have been evaluated using X-ray diffraction and Fourier transform infrared spectroscopy. It is found that the 10 wt. % replacement of metakaolin with calcium hydroxide, together with a reduction in silicate activator concentration from 10 to 5M, does not adversely impact the phase evolution on heating since similar crystalline phases are seen to emerge. However, the exact location of calcium in the high temperature phases of silicate-activated metakaolin remains unknown.more » « less
-
Abstract The resurgence of oil and gas extraction in the Appalachian Basin has resulted in an excess of oil and gas brines in Pennsylvania, West Virginia, and Ohio. Primarily driven by unconventional development, this expansion has also impacted conventional wells and consequently, created economic pressure to develop effective and cheap disposal options. Using brine as a road treatment, directly or as a processed deicer, however, creates substantial concern that naturally occurring radioactive material in the brines can contaminate roads and road-side areas. Current decision making is based on risk exposure scenarios developed by regulatory agencies based on recreational users in rural areas and exposures to drivers during a typical commute. These scenarios are not appropriate for evaluating exposures to residential deicer users or people living near treated streets. More appropriate exposure scenarios were developed in this work and exposures predicted with these models based on laboratory measurements and literature data. Exposure scenarios currently used for regulatory assessment of brine road treatment result in predicted exposures of 0.4–0.6 mrem/year. Residential exposures predicted by the scenarios developed in this work are 4.6 mrem/year. If the maximum range of near-road soil radium concentrations observed in the region is used in this residential scenario (60 pCi/g226Ra, 50 pCi/g228Ra), residents living near these roads would be exposed to an estimated 296 mrems/year, above regulatory exposure thresholds used in nuclear facility siting assessments. These results underline the urgent need to clarify exposure risks from the use of oil and gas brines as a road treatment, particularly given the existing disparities in the distribution of road impacts across socioeconomic status.more » « less
An official website of the United States government
