Abstract Aluminum (Al) is delivered to surface ocean waters by aeolian dust, making it a promising tracer to constrain dust deposition rates and the atmospheric supply of trace metal micronutrients. Over recent years, dissolved Al has been mapped along the GEOTRACES transects, providing unparalleled coverage of the world ocean. However, inferring atmospheric input rates from these observations is complicated by a suite of additional processes that influence the Al distribution, including reversible particle scavenging, biological uptake by diatoms, hydrothermal sources, sediment resuspension. Here we employ a data‐assimilation model of the oceanic Al cycle that explicitly accounts for these processes, allowing the atmospheric signal to be extracted. We conduct an ensemble of model optimizations that test different dust deposition distributions and consider spatial variations in Al solubility, thereby inferring the atmospheric Al supply that is most consistent with GEOTRACES observations. We find that 37.2 ± 11.0 Gmol/yr of soluble Al is added to the global ocean, dominated in the Atlantic Ocean, and that Al fractional solubility varies strongly as a function of atmospheric dust concentration. Our model also suggests that 6.1 ± 2.4 Gmol Al/yr is injected from hydrothermal vents, and that vertical Al redistribution through the water column is dominated by abiotic reversible scavenging rather than uptake by diatoms. Our results have important implications for the oceanic iron (Fe) budget: based on the soluble Fe:Al ratio of dust, we infer that aeolian Fe inputs lie between 3.82 and 9.25 Gmol/yr globally, and fall short of the biological Fe demand in most ocean regions.
more »
« less
This content will become publicly available on July 1, 2026
Evolution of the South Pacific's Iron Cycle Over the Cenozoic
Abstract Iron (Fe) availability impacts marine primary productivity, potentially influencing the efficiency of the biological carbon pump. Stable Fe isotope analysis has emerged as a tool to understand how Fe is sourced and cycled in the water column; however its application to sediment records is complicated by overlapping isotope signatures of different sources and uncertainties in establishing chronologies. To overcome these challenges, we integrate Fe and osmium isotope measurements with multi‐element geochemical analysis and statistical modeling. We apply this approach to reconstruct the history of Fe delivery to the South Pacific from three pelagic clay sequences spanning 93 million years. Our analysis reveals five principal Fe sources—dust, distal background, two distinct hydrothermal inputs, and a magnesium‐rich volcanic ash. Initially, hydrothermal inputs dominated Fe deposition, but as the sites migrated away from their respective mid‐ocean ridges, other sources became prominent. Notably, from 66 to 40 million years ago (Ma), distal background Fe was the primary source before a shift to increasing dust dominance around 30 Ma. This transition implies that Fe in South Pacific seawater has been dust‐dominated since ≈30 Ma, despite extremely low dust deposition rates today. We speculate that the shift to episodic and low Fe fluxes in the South Pacific and Southern Ocean over the Cenozoic helped shape an ecological niche that favored phytoplankton that adapted to these conditions, such as diatoms. Our analysis highlights how Fe delivery to the ocean is driven by large‐scale tectonic and climatic shifts, while also influencing climate through its integral role in marine phytoplankton and Earth's biogeochemical cycles.
more »
« less
- PAR ID:
- 10645770
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 40
- Issue:
- 7
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dissolved iron (dFe) plays an important role in regulating marine productivity. In high nutrient, low chlorophyll regions (>33% of the global ocean), iron is the primary growth limiting nutrient, and elsewhere iron can regulate nitrogen fixation by diazotrophs. The link between iron availability and carbon export is strongly dependent on the phytoplankton iron quotas or cellular Fe:C ratios. This ratio varies by more than an order of magnitude in the open ocean and is positively correlated with ambient dFe concentrations in field observations. Representing Fe:C ratios within models is necessary to investigate how ocean carbon cycling will interact with perturbations to iron cycling in a changing climate. The Community Earth System Model ocean component was modified to simulate dynamic, group‐specific, phytoplankton Fe:C that varies as a function of ambient iron concentration. The simulated Fe:C ratios improve the representation of the spatial trends in the observed Fe:C ratios. The acclimation of phytoplankton Fe:C ratios dampens the biogeochemical response to varying atmospheric deposition of soluble iron, compared to a fixed Fe:C ratio. However, varying atmospheric soluble iron supply has first order impacts on global carbon and nitrogen fluxes and on nutrient limitation spatial patterns. Our results suggest that pyrogenic Fe is a significant dFe source that rivals mineral dust inputs in some regions. Changes in dust flux and iron combustion sources (anthropogenic and wildfires) will modify atmospheric Fe inputs in the future. Accounting for dynamic phytoplankton iron quotas is critical for understanding ocean biogeochemistry and projecting its response to variations in atmospheric deposition.more » « less
-
Abstract Distinctively‐light isotopic signatures associated with Fe released from anthropogenic activity have been used to trace basin‐scale impacts. However, this approach is complicated by the way Fe cycle processes modulate oceanic dissolved Fe (dFe) signatures (δ56Fediss) post deposition. Here we include dust, wildfire, and anthropogenic aerosol Fe deposition in a global ocean biogeochemical model with active Fe isotope cycling, to quantify how anthropogenic Fe impacts surface ocean dFe and δ56Fediss. Using the North Pacific as a natural laboratory, the response of dFe, δ56Fediss, and primary productivity are spatially and seasonally variable and do not simply follow the footprint of atmospheric deposition. Instead, the effect of anthropogenic Fe is regulated by the biogeochemical regime, specifically the degree of Fe limitation and rates of primary production. Overall, we find that while δ56Fedissdoes trace anthropogenic input, the response is muted by fractionation during phytoplankton uptake, but amplified by other isotopically‐light Fe sources.more » « less
-
The mid-Pleistocene transition (MPT) [~1.25 to 0.85 million years ago (Ma)] marks a shift in the character of glacial-interglacial climate. One prevailing hypothesis for the origin of the MPT is that glacial deep ocean circulation fundamentally changed, marked by a circulation “crisis” at ~0.90 Ma (marine isotope stages 24 to 22). Using high-resolution paired neodymium, carbon, and oxygen isotope data from the South Atlantic Ocean (Cape Basin) across the MPT, we find no evidence of a substantial change in deep ocean circulation. Before and during the early MPT (~1.30 to 1.12 Ma), the glacial deep ocean variability closely resembled that of the most recent glacial cycle. The carbon storage facilitated by developing deep ocean stratification across the MPT required only modest circulation adjustments.more » « less
-
Abstract The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia. Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced bottom-water export and Weddell Gyre dynamics, which helped lower atmospheric CO 2 levels.more » « less
An official website of the United States government
