skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resolving the effects of functional traits on tree growth rates: The influence of temporal dynamics and divergent strategies by leaf habit
Abstract Ensuring the sustainability of forest ecosystems requires understanding the mechanisms underlying tree growth and predicting their relative influence across taxa and environments.Functional ecology posits that variation in tree growth is related to individual differences in functional traits, which serve as proxies for resource acquisition and investment strategies. However, studies of trait–growth relationships have produced inconsistent results, likely due to unaccounted factors like interspecific interactions, ontogeny, differing leaf habit strategies, and variation in resource acquisition and allocation.We investigated the utility of key functional traits as predictors of tree height growth rates in common garden experiments in the absence of interspecific interactions. We posit that trait–growth relationships vary with age and between two groups relating to leaf habit: deciduous and evergreen species.Using data from 38 tree species planted in monoculture plots across seven sites of the International Diversity Experiment Network with Trees (IDENT) in North America and Europe, we compiled height growth rates over 9 years post‐germination. We modelled growth using a Bayesian hierarchical generalized linear model incorporating four above‐ground functional traits related to resource acquisition and investment: specific leaf area (SLA), wood density (WD), leaf dry matter content (LDMC) and seed mass (SM). Improvements in predictive power due to the variation of trait effects with age and leaf habit were evaluated via alternative hypothesis‐driven models, using the Expected Log Pointwise Predictive Density (ELPD) as a performance measure.Trait effects on growth varied with age and leaf habit, shifting between positive and negative effects, reflecting changes in resource acquisition and investment strategies. The relationships between traits and growth were strongest during the first three growing seasons for deciduous species and during the seventh to the ninth for evergreen species. Accounting for age and leaf habit substantially improved predictive power.Synthesis.Traits are not consistently associated with tree growth rates but instead reflect dynamic resource acquisition and investment strategies over time and between deciduous and evergreen species. Despite this variability, our findings confirm the utility of functional traits to predict tree growth rates, especially when trait effects are considered to vary with age and leaf habit.  more » « less
Award ID(s):
1831944 2425352
PAR ID:
10646033
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
ISSN:
0022-0477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interspecific trade‐off between growth versus mortality rates of tree species is thought to be driven by functional biology and to contribute to species ecological niche differentiation. Yet, functional trait variation is often not strongly correlated with growth and mortality, and few studies have investigated the relationships of both traits and niches, specifically encompassing above and belowground resources, to the trade‐off itself. These relationships are particularly relevant for seedlings, which must often survive resource limitation to reach larger size classes.We investigated the functional basis of the interspecific growth–mortality trade‐off and its relationship with ecological niches for seedlings of 14 tree species in a tropical forest in southwest China.We found evidence for an interspecific growth–mortality trade‐off at the seedling stage using 15 functional traits and 15 ecological niche variables. None of the organ‐level traits correlated with growth, mortality, nor the trade‐off, whereas specific stem length (SSL), a biomass allocation trait, was the only trait to have a significant correlation (positive). Moreover, light‐defined niches were not correlated with growth, mortality or the trade‐off, but soil‐defined niches did. Species at the faster growth/higher mortality end of the trade‐off were associated with higher fertility defined by lower soil bulk density and slope, and higher soil organic matter concentration and soil total nitrogen.Our findings indicate the importance of stem elongation and soil fertility for growth, mortality and their trade‐off at the seedling stage in this Asian tropical forest. Our findings contrast with analogous studies in neotropical forests showing the importance of photosynthesis‐related leaf traits related to insolation. Therefore, the functional drivers of demographic rates and trade‐offs, as well as their consequences for ecological niches, can vary among forests, likely owing to differences in biogeography, canopy disturbance rates, topography and soil properties. Moreover, the effects of functional trait variation on demographic rates and trade‐offs may be better revealed when biomass allocation is accounted for in a whole‐plant context. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Summary Plant cuticles protect the interior tissues from ambient hazards, including desiccation, UV light, physical wear, herbivores and pathogens. Consequently, cuticle properties are shaped by evolutionary selection.We compiled a global dataset of leaf cuticle thickness (CT) and accompanying leaf traits for 1212 species, mostly angiosperms, from 293 sites representing all vegetated continents. We developed and tested 11 hypotheses concerning ecological drivers of interspecific variation in CT.CT showed clear patterning according to latitude, biome, taxonomic family, site climate and other leaf traits. Species with thick leaves and/or high leaf mass per area tended to have thicker cuticles, as did evergreen relative to deciduous woody species, and species from sites that during the growing season were warmer, had fewer frost days and lower wind speeds, and occurred at lower latitudes. CT–environment relationships were notably stronger among nonwoody than woody species.Heavy investment in cuticle may be disadvantaged at sites with high winds and frequent frosts for ‘economic’ or biomechanical reasons, or because of reduced herbivore pressure. Alternatively, cuticles may become more heavily abraded under such conditions. Robust quantification of CT–trait–environment relationships provides new insights into the multiple roles of cuticles, with additional potential use in paleo‐ecological reconstruction. 
    more » « less
  3. Abstract Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance. 
    more » « less
  4. Abstract Functional traits affect the demographic performance of individuals in their environment, leading to fitness differences that scale up to drive population dynamics and community assembly. Understanding the links between traits and fitness is, therefore, critical for predicting how populations and communities respond to environmental change. However, the net effects of traits on species fitness are largely unknown because we have lacked a framework for estimating fitness across multiple species and environments.We present a modelling framework that integrates trait effects on demographic performance over the life cycles of individuals to estimate the net effect of traits on species fitness. This approach involves (1) modelling trait effects on individual demographic rates (growth, survival and recruitment) as multidimensional performance surfaces that vary with individual size and environment and (2) integrating these effects into a population model to project population growth rates (i.e., fitness) as a function of traits and environment. We illustrate our approach by estimating performance surfaces and fitness landscapes for trees across a temperature gradient in the eastern United States.Functional traits (wood density, specific leaf area and maximum height) interacted with individual size and temperature to influence tree growth, survival and recruitment rates, generating demographic trade‐offs and shaping the contours of fitness landscapes. Tall tree species had high survival, growth and fitness across the temperature gradient. Wood density and specific leaf area had interactive effects on demographic performance, resulting in fitness landscapes with multiple peaks.With this approach it is now possible to empirically estimate the net effect of traits on fitness, leading to an improved understanding of the selective forces that drive community assembly and permitting generalizable predictions of population and community dynamics in changing environments. 
    more » « less
  5. Abstract Environmental gradients act as potent filters on species distributions driving compositional shifts across communities. Compositional shifts may reflect differences in physiological tolerances to a limiting resource that result in broad distributions for tolerant species and restricted distributions for intolerant species (i.e. a nested pattern). Alternatively, trade‐offs in resource use or conflicting species' responses to multiple resources can result in complete turnover of species along gradients.We combined trait (leaf area, leaf mass per area, wood density and maximum height) and distribution data for 550 tree species to examine taxonomic and functional composition at 72 sites across strong gradients of soil phosphorus (P) and rainfall in central Panama.We determined whether functional and taxonomic composition was nested or turned over completely and whether community mean traits and species composition were more strongly driven by P or moisture.Turnover characterized the functional composition of tree communities. Leaf traits responded to both gradients, with species having larger and thinner leaves in drier and more fertile sites than in wetter and less fertile sites. These leaf trait–moisture relationships contradict predictions based on drought responses and suggest a greater role for differences in light availability than in moisture. Shifts in wood density and maximum height were weaker than for leaf traits with taller species dominating wet sites and low wood density species dominating P‐rich sites.Turnover characterized the taxonomic composition of tree communities. Geographic distances explained a larger fraction of variation for taxonomic composition than for functional composition, and community mean traits were more strongly driven by P than moisture.Synthesis. Our results offer weak support for the tolerance hypothesis for tree communities in central Panama. Instead, we observe functional and taxonomic turnover reflecting trade‐offs and conflicting species' responses to multiple abiotic factors including moisture, soil phosphorus and potentially other correlated variables (e.g. light). 
    more » « less