skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 16, 2026

Title: Post-disaster cloud-service restoration through datacenter-carrier cooperation
In network-cloud ecosystems, large-scale failures affecting network carrier and datacenter (DC) infrastructures can severely disrupt cloud services. Post-disaster cloud service restoration requires cooperation among carriers and DC providers (DCPs) to minimize downtime. Such cooperation is challenging due to proprietary and regulatory policies, which limit access to confidential information (detailed topology, resource availability, etc.). Accordingly, we introduce a third-party entity, a provider-neutral exchange, which enables cooperation by sharing abstracted information. We formulate an optimization problem for DCP–carrier cooperation to maximize service restoration while minimizing restoration time and cost. We propose a scalable heuristic, demonstrating significant improvement in restoration efficiency with different topologies and failure scenarios.  more » « less
Award ID(s):
2210384
PAR ID:
10646210
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Journal of Optical Communications and Networking
Volume:
17
Issue:
8
ISSN:
1943-0620
Page Range / eLocation ID:
700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In network-cloud ecosystems, cooperation among different entities, for example, network carriers and datacenter providers (DCPs), is crucial to enhance resiliency, especially during large-scale failures or congestion. However, such cooperation is constrained by limited visibility of confidential information, for example, network topology, resource availability, and so on, of different entities owing to proprietary and regulatory policies. To facilitate cooperation, we present and discuss the role of a third-party entity, called provider neutral exchange (PNE), which acts as a broker/mediator and enables cooperation among multiple entities by sharing abstracted (instead of detailed) information of individual entities. We design novel cooperation strategies for post-disaster service restoration and categorize them as: multi-carrier cooperation and DCP-carrier cooperation. Results under different failure scenarios show benefits of cooperation in terms of service-restoration efficiency, restoration time, and restoration cost. 
    more » « less
  2. We propose a rapid restoration strategy against PNE-node failure during postdisaster cooperation among DC providers and optical-network carriers. Our strategy reduces disruption and improves DC-service restoration by 35% in 20% less time compared to baseline. 
    more » « less
  3. To accommodate the growing demand for cloud services, telecom carriers’ networks and datacenter (DC) facilities form large network–cloud ecosystems (ecosystems for short) physically supporting these services. These large-scale ecosystems are continuously evolving and must be highly resilient to support critical services. Open and disaggregated optical-networking technologies promise to enhance the interoperability across telecom carriers and DC operators, thanks to their open interfaces in both the data plane and control/management plane. In the first part of this paper, we focus on a single entity (e.g., a telecom carrier or an emerging telecom/DC partnership company) that owns both the network and DC infrastructures in the ecosystem. We introduce a solution by leveraging open and disaggregated technologies to enhance the resilience of the optical networks within a multi-vendor and multi-domain ecosystem. In the second part of this paper, we consider the case when the networks and DCs are owned by different entities. Also, in this case, cooperation among datacenter providers (DCPs) and carriers is crucial to provide failure/disaster resilience to today’s cloud services. However, such cooperation is more challenging since DCPs and carriers, being different entities, may not disclose confidential information, e.g., detailed resource availability. Hence, we introduce a solution to enhance the resilience of such multi-entity ecosystems through cooperation between DCPs and carriers without violating confidentiality. 
    more » « less
  4. Cooperation among telecom carriers and datacenter providers (DCPs) is essential to ensure the resiliency of network-cloud ecosystems. To enable efficient cooperative recovery in case of traffic congestion or network failures, we introduce a novel, to our knowledge, multi-entity cooperation platform (MCP) for implementing cooperative recovery planning. The MCP is built over distributed ledger technology (DLT), which ensures decentralized and tamper-proof information exchange among stakeholders to achieve open and fair cooperation. We experimentally demonstrate a proof-of-concept DLT-based MCP on a testbed. We showcase a DCP–carrier cooperative planning process and the corresponding recovery in the data-plane, showing the possibility of multi-entity cooperation for quick recovery of network-cloud ecosystems. 
    more » « less
  5. Cooperation among telecom carriers and datacenter (DC) providers (DCPs) is essential to ensure resiliency of network-cloud ecosystems. To enable efficient cooperative recovery in case of resource crunch, e.g., due to traffic congestion or network failures, we previously studied several frameworks for cooperative recovery among different stakeholders (e.g., telecom carriers and DCPs). Now, we introduce a novel Multi-entity Cooperation Platform (MCP) for implementing cooperative recovery planning, to achieve efficient use of carriers’ valuable optical-network resources during recovery. We adopt a Distributed Ledger Technology (DLT) that ensures decentralized and tamper-proof information exchange among stakeholders to achieve open and fair cooperation. To support diverse types of cooperation, we develop a state machine representing the MCP operation and define state transitions associated to stakeholders’ cooperation within the state machine. Moreover, we propose a signaling system in MCP to ensure simple and reliable state transitions for stakeholders during the cooperative recovery planning in large ecosystems. We experimentally demonstrate a proof-of-concept DLT-based MCP on a testbed. We showcase a DCP-carrier cooperative planning process, showing the flexibility of the proposed MCP to support diverse types of cooperation. 
    more » « less