Abstract A highly reliable memristive device based on tantalum‐doped silicon oxide is reported, which exhibits high uniformity, robust endurance (≈1 × 109cycles), fast switching speed, long retention, and analog conductance modulation. Devices with junction areas ranging from microscale to as small as 60 × 15 nm2are fabricated and electrically characterized. ON‐/OFF‐ conductance and reset current show weak area dependence when the device is relatively large, and they become proportional to the device area when further scaled down. Two‐layer devices with repeatable switching behavior are achieved. The current study shows the potentials of Ta:SiO2‐based 3D vertical devices for memory and computing applications. It also suggests that doping of the switching layer is an efficient approach to engineer the performance of memristive devices.
more »
« less
This content will become publicly available on June 16, 2026
Effects of Spent Coffee Grounds on Improvement of Resistive Switching Characteristics in Natural Rubber‐Based Memory
Abstract The recent upsurge in environmental awareness provokes the widespread usage of green materials in sustainable electronic applications. Herein, the effects of spent coffee grounds (SCGs) on natural rubber (NR)‐based resistive switching (RS) memory are systematically investigated. This study presents the fabrication of a metal‐insulator‐metal (MIM) structure using NR incorporated with SCGs (0 to 8 wt.%) as a memristive layer and sandwiched between electrodes. A significant improvement in the ON/OFF ratio from 104for pure NR to 107, read memory window increased from 2.03 to 2.45 V with improved stability even after 130 cycles of switching is achieved with the optimal concentration of SCGs (6 wt.%). The improved performance after the incorporation of SCGs is attributed to the introduction of key chemical functional groups (C═O, C═C) in the memristive film. By varying the viscosity of NR, bending of test structure, and voltage sweep rate, the effects of trap density and location on the RS performance are established. The RS mechanisms in high and low resistance states are dominated by space‐charge‐limited conduction and Ohm's law, respectively. This research manifests the potential of SCGs in improving the RS performance of bioorganic‐based memory devices.
more »
« less
- PAR ID:
- 10646251
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 21
- Issue:
- 32
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract 2D materials have attracted much interest over the past decade in nanoelectronics. However, it was believed that the atomically thin layered materials are not able to show memristive effect in vertically stacked structure, until the recent discovery of monolayer transition metal dichalcogenide (TMD) atomristors, overcoming the scaling limit to sub‐nanometer. Herein, the nonvolatile resistance switching (NVRS) phenomenon in monolayer hexagonal boron nitride (h‐BN), a typical 2D insulator, is reported. The h‐BN atomristors are studied using different electrodes and structures, featuring forming‐free switching in both unipolar and bipolar operations, with large on/off ratio (up to 107). Moreover, fast switching speed (<15 ns) is demonstrated via pulse operation. Compared with monolayer TMDs, the one‐atom‐thin h‐BN sheet reduces the vertical scaling to ≈0.33 nm, representing a record thickness for memory materials. Simulation results based on ab‐initio method reveal that substitution of metal ions into h‐BN vacancies during electrical switching is a likely mechanism. The existence of NVRS in monolayer h‐BN indicates fruitful interactions between defects, metal ions and interfaces, and can advance emerging applications on ultrathin flexible memory, printed electronics, neuromorphic computing, and radio frequency switches.more » « less
-
Resistive switching devices are promising candidates for the next generation of nonvolatile memory and neuromorphic computing applications. Despite the advantages in retention and on/off ratio, filamentary-based memristors still suffer from challenges, particularly endurance (flash being a benchmark system showing 104to 106 cycles) and uniformity. Here, we use WO3as a complementary metal-oxide semiconductor–compatible switching oxide and demonstrate a proof-of-concept materials design approach to enhance endurance and device-to-device uniformity in WO3-based memristive devices while preserving other performance metrics. These devices show stable resistive switching behavior with >106 cycles, >105-second retention, >10 on/off ratio, and good device-to-device uniformity, without using current compliance. All these metrics are achieved using a one-step pulsed laser deposition process to create self-assembled nanocomposite thin films that have regular guided filaments of ≈100-nanometer pitch, preformed between WO3grains and interspersed smaller Ce2O3grains.more » « less
-
Abstract Emerging non-volatile memristor-based devices with resistive switching (RS) materials are being widely researched as promising contenders for the next generation of data storage and neuromorphic technologies. Titanium nitride (TiNx) is a common industry-friendly electrode system for RS; however, the precise TiNxproperties required for optimum RS performance is still lacking. Herein, using ion-assisted DC magnetron sputtering, we demonstrate the key importance not only of engineering the TiNxbottom electrodes to be dense, smooth, and conductive, but also understoichiometric in N. With these properties, RS in HfO2-based memristive devices is shown to be optimised for TiN0.96. These devices have switching voltages ≤ ±1 V with promising device-to-device uniformity, endurance, memory window of ~40, and multiple non-volatile intermediate conductance levels. This study highlights the importance of precise tuning of TiNxbottom electrodes to achieve robust performance of oxide resistive switching materials.more » « less
-
Interface‐type (IT) metal/oxide Schottky memristive devices have attracted considerable attention over filament‐type (FT) devices for neuromorphic computing because of their uniform, filament‐free, and analog resistive switching (RS) characteristics. The most recent IT devices are based on oxygen ions and vacancies movement to alter interfacial Schottky barrier parameters and thereby control RS properties. However, the reliability and stability of these devices have been significantly affected by the undesired diffusion of ionic species. Herein, a reliable interface‐dominated memristive device is demonstrated using a simple Au/Nb‐doped SrTiO3(Nb:STO) Schottky structure. The Au/Nb:STO Schottky barrier modulation by charge trapping and detrapping is responsible for the analog resistive switching characteristics. Because of its interface‐controlled RS, the proposed device shows low device‐to‐device, cell‐to‐cell, and cycle‐to‐cycle variability while maintaining high repeatability and stability during endurance and retention tests. Furthermore, the Au/Nb:STO IT memristive device exhibits versatile synaptic functions with an excellent uniformity, programmability, and reliability. A simulated artificial neural network with Au/Nb:STO synapses achieves a high recognition accuracy of 94.72% for large digit recognition from MNIST database. These results suggest that IT resistive switching can be potentially used for artificial synapses to build next‐generation neuromorphic computing.more » « less
An official website of the United States government
