skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 6, 2026

Title: Isolation of Diamond Spin Chains in a Layered Halide Perovskite Heterostructure
The halide perovskite heterostructure (CuCl4)2(MTPA)4Cu3Cl6 (Cu_Cu; MTPA = 3-(methylthio)-propylammonium) forms from solution as single crystals consisting of alternating layers of 2D CuII–Cl perovskite and 1D CuII–Cl diamond–chain intergrowth. Using magnetometry, heat capacity, and electron paramagnetic resonance measurements, we interrogate the magnetic ordering of the 2D perovskite and 1D intergrowth layers at temperatures down to 0.055 K. As with other Cu‒Cl perovskites, the perovskite-layer spins order ferromagnetically at 10 K. Magnetization data of Cu_Cu feature a multi–component curve, consistent with magnetization of the perovskite layers and one of the three additional CuII sites in the intergrowth layer, suggesting antiferromagnetic coupling of the remaining two intergrowth-layer spins. A broad feature in AC susceptibility measurements at 6 K and an anomalous heat capacity feature at 0.3 K suggest that local ordering events occur at dramatically different energy scales with decreasing temperature. EPR spectra indicate that these local orderings occur within the 1D chains. Notably, no long–range magnetic ordering event in the intergrowth is evident down to 0.055 K, suggesting that the geometric constraints imposed by the perovskite framework and the steric bulk of the MTPA ligands physically separate and magnetically isolate the diamond chains. In contrast, well–studied diamond-spin-chain materials such as azurite show long-range magnetic order at low-temperatures due to interchain interactions. Thus, Cu_Cu provides an ideal platform for studying isolated, anisotropic spin chains. More generally, this study illustrates the capability of halide perovskite heterostructures to serve as vehicles for the scalable synthesis of complex magnetic materials.  more » « less
Award ID(s):
2102306
PAR ID:
10646409
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Journal of the American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
147
Issue:
31
ISSN:
0002-7863
Page Range / eLocation ID:
28340 to 28349
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The exploration of 1D magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many‐body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, structural, magnetic, and optical properties of highly anisotropic 2D van der Waals antiferromagnets that uniquely host spin chains are explored. First‐principle calculations reveal that the weakest interaction is interchain, leading to essentially 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, the structure is engineered by alloying, varying the 1D spin chain lengths using electron beam irradiation, or twisting for localized patterning, and spin textures are calculated, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, these materials are anticipated to bring fresh perspectives on harvesting low‐dimensional magnetism. 
    more » « less
  2. Abstract Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way toquantum liquids with exotic entanglementthrough two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaev’s honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10where Ir3O12trimers form an unfrustrated square lattice. The crystal structure shows no apparent spin chains. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilized by strong antiferromagnetic interaction with Curie–Weiss temperature ranging from −766 to −169 K due to magnetic anisotropy. The anisotropy-averaged frustration parameter is 2000, seldom seen in iridates. Heat capacity and thermal conductivity are both linear at low temperatures, a familiar feature in metals but here in an insulator pointing to an exotic quantum liquid state; a mere 2% Sr substitution for Ba produces long-range order at 130 K and destroys the linear-T features. Although the Ir4+(5d5) ions in Ba4Ir3O10appear to form Ir3O12trimers of face-sharing IrO6octahedra, we propose that intra-trimer exchange is reduced and the lattice recombines into an array of coupled 1D chains with additional spins. An extreme limit of decoupled 1D chains can explain most but not all of the striking experimental observations, indicating that the inter-chain coupling plays an important role in the frustration mechanism leading to this quantum liquid. 
    more » « less
  3. null (Ed.)
    We report the magnetic properties and magnetic structure determination for a linear-chain antiferromagnet, MnBi2Se4. The crystal structure of this material contains chains of edge-sharing MnSe6 octahedra separated by Bi atoms. The magnetic behavior is dominated by intrachain antiferromagnetic (AFM) interactions, as demonstrated by the negative Weiss constant of −74 K obtained by the Curie–Weiss fit of the paramagnetic susceptibility measured along the easy-axis magnetization direction. The relative shift of adjacent chains by one-half of the chain period causes spin frustration due to interchain AFM coupling, which leads to AFM ordering at TN = 15 K. Neutron diffraction studies reveal that the AFM ordered state exhibits an incommensurate helimagnetic structure with the propagation vector k = (0, 0.356, 0). The Mn moments are arranged perpendicular to the chain propagation direction (the crystallographic b axis), and the turn angle around the helix is 128°. The magnetic properties of MnBi2Se4 are discussed in comparison to other linear-chain antiferromagnets based on ternary mixed-metal halides and chalcogenides. 
    more » « less
  4. The halide perovskite TiF3, renowned for its intricate interplay between structure, electronic correlations, magnetism, and thermal expansion, is investigated. Despite its simple structure, understanding its low‐temperature magnetic behavior has been a challenge. Previous theories propose antiferromagnetic ordering. In contrast, experimental signatures for an ordered magnetic state are absent down to 10 K. The current study has successfully reevaluated the theoretical modeling of TiF3, unveiling the significance of strong electronic correlations as the key driver for its insulating behavior and magnetic frustration. In addition, frequency‐dependent optical reflectivity measurements exhibit clear signs of an insulating state. The analysis of the calculated magnetic data gives an antiferromagnetic exchange coupling with a net Weiss temperature of order 25 K as well as a magnetic response consistent with aS = 1/2 local moment per Ti3+. Yet, the system shows no susceptibility peak at this temperature scale and appears free of long‐range antiferromagnetic order down to 1 K. Extending ab initio modeling of the material to larger unit cells shows a tendency for relaxing into a noncollinear magnetic ordering, with a shallow energy landscape between several magnetic ground states, promoting the status of this simple, nearly cubic perovskite structured material as a candidate spin liquid. 
    more » « less
  5. Motivated by frustrated magnets and quasi-one-dimensional magnetic materials, we study the magnetic properties of one-dimensional (1D) Ising chains with nearest-neighbor (NN) and weaker next-to-nearest-neighbor (NNN) interactions in the presence of vacancy defects. The effect of a vacancy on the magnetic susceptibility of a spin chain is twofold: it reduces the length of the chain by an effective “vacancy size” and may also act as a free spin, a “quasispin,” with a Curie-type 𝜒_{quasi}=⟨𝑆^2⟩/𝑇 contribution to the susceptibility. In chains with antiferromagnetic short-range order, the susceptibility of vacancy-free chains is exponentially suppressed at low temperatures, and quasispins dominate the effect of impurities on the chains' magnetic properties. For chains with antiferromagnetic NN interactions, the quasispin matches the value ⟨𝑆^2⟩=1 of the Ising spins in the chain for ferromagnetic NNN interactions and vanishes for antiferromagnetic NNN interactions. For chains with ferromagnetic short-range order, quasispin effects are insignificant due to exponentially large low-temperature susceptibilities, and the dominant effect of a vacancy is effectively changing the length of the chain. 
    more » « less